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SUMMARY

Half-band filters are a class of important filters

among digital filters, and have been widely used in many

applications such as filter banks and wavelets. The conven-

tional methods are mainly concerned with FIR half-band

filters with exactly linear phase. However, the exactly linear

phase filters have a drawback of large group delay when

high-order filters are required. In this paper, the design of

FIR half-band filters with a lower group delay is consid-

ered. In some applications of filter banks and wavelets, a

flat magnitude response is required for the half-band filters.

Therefore, a new method for designing low-delay FIR

half-band filters with arbitrary flatness is proposed. In the

proposed method, while taking the specified flatness con-

dition into account, the design problem is formulated by

using the complex Remez exchange algorithm in the stop-

band. Then, a set of filter coefficients can be easily obtained

by solving a simple system of linear equations. The optimal

solution with an equiripple response in the stopband is

obtained by applying an iteration process. Finally, the pro-

posed method is applied to the design of two-channel

perfect reconstruction filter banks with low group delay to

demonstrate its effectiveness. © 2000 Scripta Technica,

Electron Comm Jpn Pt 3, 83(10): 1�9, 2000
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1. Introduction

Half-band filters are a class of important filters

among digital filters, and have been widely used in many

applications such as filter banks and wavelets [1�3]. The

conventional methods for designing half-band filters are

mainly concerned with FIR half-band filters with exactly

linear phase [1�5]. However, the group delay is equal to

half the filter order for FIR filters with exactly linear phase,

since the filter coefficients are symmetric. Thus, the group

delay becomes larger as the filter order increases. When a

sharp magnitude response is required and high-order filters

are needed, the large group delay of FIR linear phase filters

will present a serious problem. In particular, it will have a

negative influence on the overall system in cases of real-

time signal processing [7, 9]. Therefore, it is essential to

design FIR half-band filters with a lower group delay.

In this paper, we consider the design of FIR half-band

filters with low group delay. First, we investigate the fre-

quency response property and constraint from the time-

domain condition of FIR half-band filters. According to this

property, it is shown that the design problem of low-delay

FIR half-band filters can be reduced to the minimization of

the magnitude response in the stopband. Also, in some

applications of filter banks and wavelets [6�9], a flat mag-

nitude response is required for the half-band filters. There-

fore, we propose a new method for designing low-delay FIR

half-band filters with arbitrary flatness. In the proposed

method, while taking the specified flatness condition into

account, the design problem of FIR half-band filters is

formulated as a linear problem by using the complex Remez

exchange algorithm in the stopband. Then, a set of filter
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coefficients can be easily obtained by solving a simple

system of linear equations. The optimal solution with an

equiripple response in the stopband is obtained by applying

an iteration process. The advantages of the proposed

method are that a lower group delay can be realized and

flatness can be arbitrarily specified for FIR half-band fil-

ters. Finally, we apply the proposed method to the design

of two-channel perfect reconstruction filter banks with low

group delay to demonstrate its effectiveness.

2. Low-Delay FIR Half-Band Filters

The transfer function H�z� of FIR digital filter of

order 2N is defined as

where hn are real filter coefficients. In the design of half-

band filters, the impulse response is required to satisfy the

following constraint in the time domain:

where K is odd. In the frequency domain, the desired

frequency response is given by

where Zp and Zs are the passband and stopband cutoff

frequencies, respectively, and Zp � Zs   S. It is seen in Eq.

(3) that the desired group delay of half-band filters is K in

the passband, that is, the group delay can be controlled by

selecting a smaller or larger K. In the conventional design

methods of FIR half-band filters, the filter coefficients must

be symmetric to obtain an exact linear phase, so that the

group delay is equal to half the filter order, that is, K   N.

Thus, the group delay K becomes larger as the filter order

2N increases. When a sharp magnitude response is required

and high-order filters are needed, the large group delay of

FIR linear phase filters will pose a serious problem. In

particular, it will have a negative influence on the overall

system in some applications of real-time signal processing

[7, 9]. Therefore, we consider the design of FIR half-band

filters with a lower group delay in this paper. That is, we

select a smaller K by relaxing the symmetry condition of

filter coefficients required in the linear phase filters, as

shown in Fig. 1. While it is only possible to design half-

band filters of order 2N = 2, 6, 10, . . . , since N is odd due

to K   N in FIR linear-phase half-band filters, filters of not

only 2N = 2, 6, 10, . . . but also 2N = 4, 8, 12, . . . can be

designed, because the symmetry condition of filter coeffi-

cients is relaxed in this paper.

By substituting the time-domain condition of Eq. (2)

into Eq. (1) the transfer function of FIR half-band filters

becomes

where an   h2n. Assume that Ĥ�z� is a noncausal shifted

version of H�z� in Eq. (4):

Hence, the frequency response of Ĥ�z� is given by

From Eq. (3), the desired frequency response of Ĥ�z� is

It is clear in Eq. (6) that the frequency response of Ĥ�z�

satisfies the following relation:

(1)

(2)

(3)

Fig. 1. Impulse responses of FIR half-band filters.

(4)

(5)

(6)

(7)

(8)

2



where x
 denotes the complex conjugate of x. Equation (8)

means that a certain constraint is imposed on the frequency

response of Ĥ�z� at two frequency points Z and S � Z from

the time-domain condition of Eq. (2). By rewriting Eq. (8),

we have

where Z0 is one frequency point in the passband. Then

S � Z0 is located in the stopband. It is seen in Eq. (9) that

the frequency response of Ĥ�z� in the passband is dependent

on the stopband response. Therefore, if its stopband re-

sponse is 0, then Ĥ�e jZ�   1, that is, H�e jZ�   e�jKZ in the

passband. Let Gs be the maximum magnitude error in the

stopband; the maximum magnitude error Gp and phase error

'Tp in the passband are

Then both the passband magnitude and phase errors are

decided by the stopband magnitude error. Therefore, the

design problem of low-delay FIR half-band filters is re-

duced to the minimization of the stopband magnitude error.

In the following, we consider the approximation of Ĥ�z� in

the stopband.

3. Design of Low-Delay FIR Half-Band

Filters with Arbitrary Flatness

In many applications of filter banks and wavelets

[6�9], a flat magnitude response is required for half-band

filters from the regularity of wavelets. Now, we consider the

design of low-delay FIR half-band filters with arbitrary

flatness. There are N + 1 unknown filter coefficients in the

transfer function H�z� of Eq. (4). Hence. H�z� has N + 1

independent zeros. In the following, we will use these N +

1 independent zeros to approximate the stopband response.

3.1. Flatness condition

For FIR half-band filters, a flat magnitude response

is required at Z = 0 and Z   S. The flatness conditions are

given by

where 0 d M d N � 1. It is clear in Eq. (9) that if the flatness

condition in Eq. (12) is satisfied, the flatness condition in

Eq. (11) is automatically satisfied. Therefore, only the

flatness condition in Eq. (12) is taken into account in the

following. To satisfy the flatness condition in Eq. (12), M

independent zeros must be located at z   �1.

By differentiating the frequency response of Eq. (6),

Therefore, from the flatness condition in Eq. (12), we have

When M   N � 1, that is, the maximally flat half-band

filters are designed, the filter coefficients can be easily

obtained by solving the linear equations in (14). Also the

maximally flat half-band filters can be analytically solved.

See Ref. 2 for details.

3.2. A choice of initial zeros

When M d N, the number of remaining independent

zeros other than z   �1 is N � M � 1. As shown in Fig. 2, all

of the remaining independent zeros must be located on the

unit circle in the z plane to minimize the magnitude error in

the stopband. In the z plane, the zeros on the unit circle other

than z   r1 must be complex conjugate pairs in the case of

real filters. Then N � M � 1 is required to be even, that is, 

N � M � 1   2I. Here, we first select 2I independent zeros

as an initial guess in the stopband as follows;

(9)

(10)

(11)

(12)

(13)

(14)

Fig. 2. Zero location of FIR half-band filters.

(15)
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Therefore, we have from Eq. (6)

By dividing Eq. (16) into real and image parts, we get

Summarizing Eqs. (14) and (17), there are a total of N + 1

equations. Therefore, a set of filter coefficients can be

obtained by solving the linear equations in (14) and (17).

3.3. Formulation using complex Remez

exchange algorithm

In Section 3.2, we equally select a set of initial zeros

in the stopband to obtain a set of filter coefficients. As a

result, the obtained magnitude response may not be equirip-

ple in the stopband. Here, we use the filter coefficients

obtained in Section 3.2 as an initial value, and then formu-

late the design problem in such a way that the stopband

response becomes equiripple by using the complex Remez

exchange algorithm. We calculate the magnitude response

of Ĥ�z� from the initial filter coefficients, then search for

the I + 1 extremal frequencies Zi in the stopband as follows

and compute the corresponding phase T�Zi�:

Next, we apply the complex Remez exchange algorithm at

these extremal frequencies in the stopband, and formulate

Ĥ�e jZ� as

where G is the magnitude error and 'T is the phase error.

Substituting Eq. (6) into Eq. (19), we get

By dividing Eq. (20) into real and image parts,

where G1   G cos 'T and G2   G sin 'T. There are a total of

N + 3 equations in (14) and (21). Therefore, a set of filter

coefficients can be obtained by solving the linear equations

in (14) and (21). We calculate the magnitude response of

Ĥ�z� by using the obtained filter coefficients, then search

for the peak frequencies :i in the stopband and compute

the corresponding phase T�:i�. As a result, the obtained

peak frequencies :i may not be consistent with the extremal

frequencies Zi. We then use the obtained peak frequencies

as the extremal frequencies in the next iteration and solve

the linear equations in (14) and (21) to obtain a set of filter

coefficients again. The algorithm is iterated until the

equiripple stopband response is attained. In this paper, the

proposed algorithm converges with a few iterations, since

the filter coefficients obtained in Section 3.2 are used as an

initial value.

3.4. Design algorithm

1. Read half-band filter specifications N, M, K, and

the passband and stopband cutoff frequencies Zp and Zs.

2. Select the initial zeros Z
BB

i equally spaced in the

stopband as shown in Eq. (15).

3. Solve the linear equations in (14) and (17) to obtain

a set of initial filter coefficients an.

4. Compute the magnitude response of Ĥ�z� by using

the obtained initial coefficients an, then search for the peak

frequencies :i in the stopband and compute the corre-

sponding phase T�:i�.

5. Set Zi   :i�i   0, 1, . . . I�.
6. Solve the linear equations in (14) and (21) to obtain

a set of coefficients an.

7. Compute the magnitude response of Ĥ�z� by using

the obtained filter coefficients an, then search for the peak

frequencies :i in the stopband and compute the corre-

sponding phase T�:i�.

8. If |:i � Zi| � H�i   0, 1, . . . , I � is satisfied, then

exit. Else, go to step 5, where H is a prescribed small

constant.

4. Application to Filter Banks

Recently, filter banks and wavelets have been exhaus-

tively studied and applied in signal processing and so on.

Here, we describe the design of two-channel filter banks as

(16)

(17)

(18)

(19)

(20)

(21)
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an application of FIR half-band filters. A class of biortho-

gonal filter banks with structurally perfect reconstruction

have been proposed in Ref. 8. In this class of two-channel

filter banks, the perfect reconstruction condition is structur-

ally satisfied, that is, reversible, regardless of the quantiza-

tion of filter coefficients and roundoff noise by the

multiplier. In Ref. 8, since FIR linear-phase filters are used,

the overall delay of the filter banks becomes large when

high-order filters are required. In real-time signal process-

ing applications, it is essential to have a lower delay. There-

fore, the design of low-delay filter banks has been attempted

in Refs. 7 and 9. In this paper, we apply the design method

of low-delay FIR half-band filters described in Section 3 to

the structurally perfect reconstruction filter banks proposed

in Ref. 8, and design two-channel perfect reconstruction

filter banks with low delay. Assume that H1�z�, H2�z� are

analysis filters, and F1�z�, F2�z� synthesis filters, respec-

tively, in two-channel filter banks. The perfect reconstruc-

tion condition of filter banks is

where L is an integer. In Ref. 8, the analysis and synthesis

filters are constructed as

where K1, K2 are integers, and L   K1 � K2. Hence, the

perfect reconstruction condition of Eq. (22) is satisfied. Let

A�z� and B�z� be FIR filters of order N1 and N2, respectively:

where an, bn are real filter coefficients. By comparing the

transfer function in Eq. (4) with H1�z� in Eq. (23), it is clear

that H1�z� is a half-band filter. Therefore, it is possible to

design H1�z� with low group delay by using the design

method proposed in Section 3. In the stopband [Zs, S]

of H1�z�, since H1�e
jZ�   0, then H2�e

jZ�   e�j2K2
Z, and it

i s  a passband. In the passband [0, Zp] of H1�z�,

H1�e
jZ�   e�j�2K1�1�Z ideally, then

where

Since the band [0, Zp] is the stopband of H2�z�, H
~

2�z� must

be 0 in the band [Zs, S]. Note that Zp � Zs   S. H
~

2�z� in Eq.

(26) is clearly a half-band filter, and then can be designed

by using the method proposed in Section 3. However,

H2�z� may not be equiripple in the stopband since it is

influenced by H1�z�, although H
~

2�z� is designed to be

equiripple in the stopband [12]. In the practical design, the

influence of error of H1�z� must be considered. Here, we

consider Ĥ2�z� as

where

When using the complex Remez exchange algorithm to

design H2�z�, the equiripple response in the stopband can

be obtained by formulating Ĥ2�z� in Eq. (27) [12]. The

design algorithm is the same as in Section 3.4.

5. Design Examples

[Example 1]

The filter specifications are N = 19,  M = 10,

Zp   0.4S, and Zs   0.6S, and the filter order is 2N = 38. We

have designed FIR half-band filters with various K by using

the design method described in Section 3. The range of

designable K is 1 d K d 37. The impulse response of K = 15

is shown in Fig. 3(a). For comparison, the impulse response

of the exact linear phase filter with K = 19 is shown in Fig.

3(b) also. It can be seen that the impulse response of low

(high) delay filters is not symmetric, while the impulse

response of the exact linear phase filters is symmetric.

There are �N � 1� /2 zeros inside and outside the unit circle,

respectively, for the exact linear phase filters. However, low

(high) delay filters have N � �K � 1� / 2 zeros inside the unit

circle, and �K � 1� /2 zeros outside the unit circle. For filters

with K   N r 2D�D   1, 2, . . . �, their zeros satisfy the

image-mirror relation with respect to the unit circle, and

thus the magnitude responses are the same and the group

delays are symmetric with respect to K   N. The obtained

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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magnitude responses are shown in Fig. 4. It is clear that the

equiripple response in the stopband is obtained while the

given degrees of flatness are met. According to the symme-

try of group delay, only the group delays with K d N are

shown in Fig. 5, and ones with K ! N are omitted. It is seen

that low (high) group delay can be realized. To examine the

influence of group delay K on the frequency response, a

chart of the stopband minimum attenuation versus K is

shown in Fig. 6. The filters with K   N r 2D have the same

stopband attenuation, and thus only those to K   N   19 are

shown in Fig. 6; when K = 19, it is seen that the exact linear

phase filters have the maximal stopband attenuation, and

the stopband attenuation becomes smaller as K decreases.

Here, we designed an exact linear phase filter with filter

order 2N   30 and group delay K = 15, then compared it

with the low group delay filter. Their magnitude responses

are shown in Fig. 7. Compared with the low-delay filter, the

stopband attenuation of the exact linear phase filter with

lower filter order becomes smaller. To obtain the same

stopband attenuation as the low-delay filter, an exact linear

phase filter with at least 2N = 38 is needed. However, since

the filter coefficients are symmetric in the exact linear phase

filters, the number of multipliers required in implementa-

tion is about half the filter order. In this design example, we

needed about five or six iterations to obtain the equiripple

response.

[Example 2]

The filter specifications are N = 18, K = 15,

Zp   0.4S, and Zs   0.6S, and the filter order is 2N = 36.

The exact linear phase half-band filter with the same order

does not exist. We have designed low-delay FIR half-band

filters by varying the degree of flatness M. The obtained

magnitude responses and group delays are shown in Figs.

8 and 9, respectively. M = 19 corresponds to the maximally

flat filter, while M = 1 is the minimax solution with equirip-

Fig. 3. Impulse responses of FIR half-band filters.

Fig. 4. Magnitude responses of FIR half-band filters.

Fig. 5. Group delays of FIR half-band filters.

Fig. 6. Stopband minimum attenuation versus group

delay K.
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ple response. It is seen in Fig. 8 that flatness can be arbi-

trarily specified. A plot of the stopband minimum attenu-

ation versus M is shown in Fig. 10. As M increases, the

stopband attenuation becomes smaller. In this design exam-

ple, we needed about five or six iterations.

[Example 3]

The specifications of filter banks are K1   6,

K2   13, Zp   0.4S, and Zs   0.6S. The order of A�z�, B�z�
are N1   15, N2   17. We have designed the filter bank with

a degree of flatness M1   M2   12. The obtained magnitude

Fig. 7. Magnitude responses of FIR half-band filters.

Fig. 8. Magnitude responses of FIR half-band filters.

Fig. 9. Group delays of FIR half-band filters.

Fig. 10. Stopband minimum attenuation versus flatness M.

Fig. 11. Magnitude responses of analysis filters.

Fig. 12. Group delays of analysis filters.
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responses and group delays are shown in Figs. 11 and 12,

respectively. The overall delay of the filter bank is 39

samples, that is, L = 19. However, when the exact linear

phase filters with the same order are used, the overall delay

is 47 samples (L = 23).

6. Conclusions

In this paper, we have proposed a new method for

designing low-delay FIR half-band filters with arbitrary

flatness. First, we have investigated the frequency response

property and constraint from the time-domain condition of

FIR half-band filters, and have shown that the design prob-

lem of FIR half-band filters can be reduced to the minimi-

zation of the magnitude response in the stopband. Next, the

design problem of FIR half-band filters is formulated as a

linear problem by using the complex Remez exchange

algorithm in the stopband, while taking the specified flat-

ness condition into account. Therefore, a set of filter coef-

ficients can be easily obtained by solving a simple system

of linear equations. The optimal solution with an equiripple

response in the stopband is obtained by applying an itera-

tion process. The advantages of the proposed method are

that a lower group delay can be realized and flatness can be

arbitrarily specified for FIR half-band filters. Finally, we

have applied the proposed method to the design of two-

channel perfect reconstruction filter banks with low delay

to demonstrate its effectiveness.
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