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SUMMARY

In the design of IIR digital filters, the method that

utilizes the classic analog filter design theory to design

analog filters and then obtain the corresponding digital

filters by s�z transformation is well-known. However, IIR

digital filters obtained via the bilinear s�z transformation

have just equal-order numerator and denominator. Having

unequal-order numerator and denominator will give more

degrees of freedom in filter design. In this paper, we con-

sider the design of IIR digital filters with unequal-order

numerator and denominator, and propose a method for

designing the flat passband and equiripple stopband filters

in z-domain directly. First, we present a design method of

IIR filters with flat stopband and equiripple passband re-

sponses. The flat stopband response can be easily obtained

only by locating multiple zeros on the specified frequency

points, while the equiripple passband response can be de-

signed by using the Remez exchange algorithm and speci-

fying the maximum magnitude error. Second, we can obtain

IIR filters with flat passband and equiripple stopband re-

sponses via a magnitude transformation such that the pass-

band and stopband become the corresponding stopband and

passband, respectively. However, the numerator order of

IIR filters obtained by the above method is equal to or

higher than the denominator. Finally, we consider the de-

sign of IIR filters that have lower-order numerator than

denominator, and present a method for designing the flat

passband and equiripple stopband filters directly. © 2001

Scripta Technica, Electron Comm Jpn Pt 3, 84(11): 37�44,

2001
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1. Introduction

In the design problem of IIR digital filters for mag-

nitude response, the method utilizing the classic analog

filter design theory is well-known [1�4]. There are basi-

cally four types of filters�Butterworth (maximally flat),

Chebyshev type I (equiripple passband and flat stopband)

and II (flat passband and equiripple stopband), and elliptic

(both passband and stopband are equiripple) filters�in the

analog filters. Given the design specification, the desired

type of analog filters is first designed, then the correspond-

ing digital filters are obtained via s�z transformation. How-

ever, IIR digital filters obtained via the bilinear s�z

transformation have just equal-order numerator and de-

nominator. Consequently, IIR digital filters with unequal-

order numerator and denominator cannot be designed from

the analog filters. Hence, it is required to design IIR digital

filters with unequal-order numerator and denominator in

z-domain directly. Freely choosing the numerator and

denominator order will increase one design parameter

and give more degrees of freedom in filter design. Design

of IIR filters having unequal-order numerator and de-

nominator had been considered in Refs. 5 to 12. In Refs.

7 to 10, some methods for designing IIR filters with both

equiripple passband and stopband had been proposed,

and it was shown that compared with IIR filters with

equal-order numerator and denominator, unequal-order

filters have superior magnitude performance in narrow-

and wide-band filters. Also, a design method for maximally
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flat IIR filters was  proposed in Ref. 11, and a closed-form

solution was given. However, in the filter design where one

passband or stopband is flat and another is equiripple, only

FIR filters [5, 6] and IIR filters simultaneously considering

its group delay [12] were given.

In this paper, we consider the design of IIR digital

filters with unequal-order numerator and denominator, and

propose a method for designing the flat passband and

equiripple stopband filters in z-domain directly. First, we

present a design method of IIR filters with flat stopband

and equiripple passband responses. The flat stopband

response can be easily obtained only by locating multiple

zeros on the specified frequency points, while the

equiripple passband response can be designed by using

the Remez exchange algorithm and specifying the maxi-

mum magnitude error. Second, we can obtain IIR filters

with flat passband and equiripple stopband responses via

a magnitude transformation such that the passband and

stopband become the corresponding stopband and pass-

band, respectively. However, the numerator order of IIR

filters obtained via the magnitude transformation is equal

to or higher than the denominator. Therefore, an alterna-

tive method for designing the flat passband and equirip-

ple stopband filters is needed in the design of IIR filters

that have lower-order numerator than denominator. We

give a transfer function that yields the flat response in

passband, and present a method for designing the

equiripple response in stopband by using the Remez

exchange algorithm. Finally, some examples are de-

signed to demonstrate the effectiveness of the proposed

method.

2. Transfer Functions of IIR Digital Filters

The transfer function H(z) of an IIR digital filter is

defined as

where N and M are order of numerator and denominator,

respectively, filter coefficients an and bm are real, and b0 =

1 in general.

If the transfer function H(z) and its inverse transfer

function H(z�1) are cascaded, then zero-phase filter G(z) can

be obtained by

where filter coefficients cn and dm are real, and satisfy the

following symmetrical conditions:

Hence, the magnitude response of G(z) is given by

It can be seen in Eq. (4) that since the magnitude response

of G(z) is equal to the squared magnitude of H(z), the

G�e jZ� t 0.

Also, we examine the relation of zeros and poles

between H(z) and G(z). If a zero of H(z) is located on the

unit circle, then G(z) has double zeros on the unit circle. If

a zero of H(z) is located inside or outside the unit circle, the

zeros of G(z) become the mirror-image pairs with respect

to the unit circle. To obtain a stable filter, the poles of H(z)

must be located inside the unit circle, then G(z) has the

mirror-image poles with respect to the unit circle. There-

fore, if G(z) having the mirror-image zeros and poles with

respect to the unit circle and the double zeros on the unit

circle can be designed, then stable H(z) can be obtained by

factorizing these zeros and poles. The symmetrical condi-

tions of Eq. (3) guarantee that G(z) has the mirror-image

poles and zeros, and the zeros on the unit circle. To force

the zeros on the unit circle to be double zeros, G�ejZ� t 0

must be satisfied. In the following, we consider the design

of G(z) having double zeros on the unit circle.

3. Design of IIR Filters with Flat Stopband

and Equiripple Passband Responses

In this section, we describe the design of IIR digital

filters with flat stopband and equiripple passband re-

sponses. The transfer functions of zero-phase filters F(z) are

first defined as

(1)

(2)

(3)

(4)
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where filter coefficients fn and gm are real, and satisfy

In the following, we present a method for designing F(z).

3.1. Design specification

Now, we consider the design of low-pass filters. Its

specification is that in stopband, the following flatness

conditions at Z = S are required:

where L1 is a parameter denoting the degree of flatness,

while in passband, the filter magnitude is required to meet

the specified error range, that is,

where Zp is a cutoff frequency of the passband, and G is the

specified maximum magnitude error and known.

3.2. Formulation using Remez exchange

algorithm

To meet the flatness condition of Eq. (7), we must

locate multiple zeros of order 2L1 at z = �1, that is,

Then, the magnitude response of F(z) is

and satisfies the flatness condition of Eq. (7). In passband

[0, Zp], we first select (L2 + 1) sampling frequencies Zi as

follows:

and then use the Remez exchange algorithm to formulate

F�ejZi� as

By substituting Eq. (10) into Eq. (12), we get

Therefore, a set of filter coefficients gm can be easily ob-

tained by solving the linear equations of Eq. (13). We

compute the magnitude response of F(z) and search for the

peak frequencies Z
BB

i in passband. Then, we set the obtained

peak frequencies as the sampling frequencies in the next

iteration and solve the linear equations again. The above

procedure is iterated until the sampling frequencies Zi and

the peak frequencies Z
BB

i are consistent. When the peak

frequencies do not change, we can obtain the optimal

solution with an equiripple magnitude response in pass-

band. The design algorithm is shown in detail as follows.

3.3. Design algorithm

1. Read filter specifications L1, L2, G and the cutoff

frequency Zp.

2. Select (L2 + 1) initial sampling frequencies Zi

equally spaced in passband as shown in Eq. (11).

3. Solve the linear equations of Eq. (13) to obtain a

set of filter coefficients gm.

4. Compute the magnitude response of F(z) by us-

ing the obtained filter coefficients gm, and search for the

peak frequencies Z
BB

i in passband.

5. If ¦ i 0
L
2  |Z
BB

i � Zi| � H, then exit. Else, go to step 6,

where H is a prescribed small constant.

6. Set Zi   Z
BB

i �i   0, 1, . . . , L2�, then go to step 3.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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3.4. Design of bandpass and bandstop filters

In Section 3.2, we described the design of low-pass

filters. High-pass filters can be designed the same as low-

pass filters. Also, the design can be easily obtained from the

transfer function of the obtained low-pass filters via a

frequency transformation replacing z with �z. Here, we

describe the design of bandpass and bandstop filters.

In the case of bandpass filters, there are two stop-

bands and the flatness conditions are

and

Therefore, to meet the flatness conditions of Eqs. (14) and

(15), we have

In passband, the filter magnitude is required to meet

where Zp1, Zp2 are the cutoff frequency of the passband.

Similarly, the equiripple passband can be designed by using

the Remez exchange algorithm. Note that since the number

of peak frequencies must be odd in passband, L2 is required

to be even.

In the case of bandstop filters, the flatness conditions

in stopband are

where Zsf is the specified frequency point. Therefore, F(z)

becomes

where L1 is required to be even. In two passbands, the filter

magnitude must satisfy

and can be designed by using the Remez exchange algo-

rithm. The design algorithm is the same as in Section 3.3.

4. Design of IIR Filters with Flat Passband

and Equiripple Stopband Responses

In this section, we describe the design of IIR digital

filters G(z) with flat passband and equiripple stopband

responses. First, we consider the design of low-pass filters.

In passband, the flatness conditions at Z = 0 are

In stopband, the filter magnitude must satisfy

where Zs is a cutoff frequency of the stopband.

4.1. Design of filters with higher-order

numerator

First, we transform the stopband and passband of

G(z) into the passband and stopband of F(z), respectively,

as

Then the flatness conditions of Eq. (21) become

In stopband of G(z), we have

Therefore, by using the method proposed in Section 3, the

high-pass filter F(z) with flat stopband and equiripple pass-

band can be designed to satisfy the conditions of Eqs. (24)

and (25). From Eq. (23), we get

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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where the denominator order of G(z) is M = L2, and the

numerator order is decided by the larger one between L1 and

L2, that is, N = Max{L1, L2}. Hence, the numerator order is

equal to or larger than the denominator regardless of L1, that

is, N t M. Consequently, the filters with lower-order nu-

merator cannot be designed by the above method. In the

design of IIR filters with higher-order denominator, an

alternative method is needed for designing the flat passband

and equiripple stopband filters. In the following, we con-

sider the design of IIR filters with higher-order denomina-

tor. Also, the design of high-pass, bandpass, and bandstop

filters G(z) can be similarly obtained by designing the

low-pass, bandstop, and bandpass filters F(z).

4.2. Design of filters with higher-order

denominator

Now, we describe the design of IIR filters with

higher-order denominator. Similarly, we consider the case

of low-pass filters.

To meet the flatness conditions of Eq. (21), we rewrite

G(z) as follows [1, 2]:

Hence, the flatness conditions of Eq. (21) are equivalent to

To meet the conditions of Eq. (28), it is required to locate

multiple zeros of order 2L1 at z = 1, and F(z) must be

Therefore, from Eq. (27), G(z) becomes

and it is clear that the flatness conditions of Eq. (21) are

satisfied. In the stopband [Zs, S], we select (L2 + 1) sam-

pling frequencies Zi as

then use the Remez exchange algorithm to formulate

G�e jZi� as

By substituting Eq. (30) into Eq. (32), we get

Therefore, a set of filter coefficients gm can be obtained by

solving the linear equations of Eq. (33). The design algo-

rithm is the same as in Section 3.3. Also, the bandstop and

bandpass filters can be similarly designed by using F(z) of

Eqs. (16) and (19) instead of Eq. (29). It is omitted here.

From Eq. (27), we have

where the numerator order of G(z) is N = L2, and the

denominator order is decided by the larger one between L1

and L2, that is, M = Max{L1, L2}. Therefore, it can be seen

that the denominator order is not lower than the numerator,

that is, M t N.

5. Design Examples

[Example 1]  {High-pass filters}

The specifications of high-pass filters with flat pass-

band and equiripple stopband are N = L1 = 8, M = L2 = 6,

and Zs = 0.3S. First, we give the maximum magnitude

errors G = 10�4, G = 10�5, and G = 10�6, respectively, and

have designed the low-pass filters with flat stopband and

equiripple passband by using the proposed method. The

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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obtained magnitude responses are shown in Fig. 1. We then

obtained the high-pass filters with flat passband and

equiripple stopband from the low-pass filters via the mag-

nitude transformation, and show their magnitude responses

in Fig. 2. It can be seen in Fig. 2 that these filters have the

minimum stopband attenuations of 40, 50, and 60 dB,

respectively. Given G = 10�4, we have also varied the degree

of flatness as N = L1 = 6 and N = L1 = 10, and designed the

high-pass filters. The obtained magnitude responses are

shown in Fig. 3, where it can be seen that the magnitude

responses become more flat as L1 increases. Note that the

filter with N = M = 6 is the same as that obtained from the

analog filters, and is shown for comparison.

[Example 2] {Bandstop filters}

The filter specification is K = 4, L1 = 10, L2 = 8,

Zs1   0.3S, Zs2   0.5S, and G = 10�4. First, we designed the

bandpass filter with flat stopband and equiripple passband,

and obtained the bandstop filter with flat passband and

equiripple stopband via the magnitude transformation. The

obtained filter has numerator of order N = 10 and denomi-

nator of order M = 8. Its magnitude response is shown in

Fig. 4 by the solid line. Second, we directly designed the

bandstop filter with flat passband and equiripple stopband

by using the method proposed in Section 4.2. The obtained

filter has numerator of order N = 8 and denominator of order

M = 10. Its magnitude response is shown in Fig. 4 by the

dotted line, and is the same. Also, we varied the maximum

magnitude error as G = 10�5 in stopband and designed the

bandstop filter by using the method proposed in Section 4.2.

The obtained magnitude response is shown in Fig. 4 by the

dashed line.

[Example 3] {Bandpass filters}

The filter specification is that the degree of flatness

at Zpf = 0.5S is L1 = 10, the cutoff frequencies are

Zs1   0.3S, Zs2   0.65S, respectively, L2 = 6, and G = 10�4.

We designed the bandpass filter with flat passband and

equiripple stopband. The obtained filter has numerator of

order N = 6 and denominator of order M = 10. Its magnitude

response is shown in Fig. 5 by the solid line. We varied the

passband and stopband as Zpf   0.6S, Zs1   0.4S,

Fig. 1. Magnitude responses of low-pass filters.

Fig. 2. Magnitude responses of high-pass filters.

Fig. 3. Magnitude responses of high-pass filters.
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Zs2   0.75S, and designed the filter. Its magnitude response

is shown in Fig. 5 by the dotted line. Also, we varied the

maximum magnitude errors in the first and second stop-

bands as G1 = 10�4, G2 = 10�5 and G1 = 10�5, G2 = 10�4,

respectively, and designed the bandpass filters. The ob-

tained magnitude responses are shown in Fig. 6. It is clear

that the magnitude error can be arbitrarily specified.

6. Conclusions

In this paper, we have considered the design of IIR

digital filters with unequal-order numerator and denomina-

tor, and proposed a method for designing the flat passband

and equiripple stopband filters in z-domain directly. First,

we have presented a design method of IIR filters with flat

stopband and equiripple passband responses. The flat stop-

band response can be easily obtained only by locating

multiple zeros on the specified frequency points, while the

equiripple passband response can be designed by using the

Remez exchange algorithm and specifying the maximum

magnitude error. Second, we obtained IIR filters with flat

passband and equiripple stopband responses via a magni-

tude transformation such that the passband and stopband

become the corresponding stopband and passband, respec-

tively. However, the numerator order of IIR filters obtained

via the magnitude transformation is not lower than the

denominator. Therefore, we have also presented an alterna-

tive method for designing IIR filters with lower-order nu-

merator. Since the efficient Remez exchange algorithm is

used in the proposed method, the filter coefficients can be

easily obtained only by solving the linear equations. The

feature of this method is that the degree of flatness in

passband and the maximum magnitude error in stopband

can be arbitrarily specified.
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Fig. 4. Magnitude responses of bandstop filters.

Fig. 5. Magnitude responses of bandpass filters.

Fig. 6. Magnitude responses of bandpass filters.
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