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SUMMARY

FIR wavelet filters are mainly used in conventional

wavelet-based image coding. However, FIR filters, except

for the Haar wavelet, cannot satisfy both the exactly linear

phase and orthonormality conditions. For example, the

well-known Daubechies-9/7 wavelet is biorthogonal. In

this paper, an effective implementation of the all-pass-

based wavelet filters is presented for wavelet-based image

coding. Since all-pass filters are IIR, both the exactly linear

phase and orthonormality conditions can be simultaneously

satisfied, so that better compression performance can be

expected. Also, IIR filters can be realized with a lower

computational complexity than can FIR filters. Finally, the

proposed IIR wavelet filters are evaluated by using SPIHT

to compress the practical images, and the influence of the

all-pass filters and delay elements on the compression

performance is investigated. It is shown through the experi -

mental results that the IIR wavelet filters proposed in this

paper have a lower computational complexity than the

Daubechies-9/7 wavelet, with a comparable compression

performance. © 2001 Scripta Technica, Electron Comm Jpn
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1. Introduction

In the past decade, wavelet-based image coding has

been extensively studied and applied in JPEG and MPEG

[1�13]. In the wavelet-based image coding scheme, two-

band PR (perfect reconstruction) filter banks play a very

important role. To avoid redundancy between subimages,

the orthonormality condition is required for two-band PR

filter banks. In addition, the analysis and synthesis filters

are required to have an exactly linear phase response, since

the symmetric extension method is generally used to accu-

rately handle the boundaries of finite-length signals [5].

Unfortunately, these two conditions cannot be simultane-

ously satisfied by conventional FIR wavelet filters, except

for the Haar wavelet [1]. The Haar wavelet is discontinuous

and is not suitable for compression of natural images [6,

13]. Thus, more regularity than the Haar wavelet is neces-

sary in compression of natural images. For example, the

Daubechies-9/7 wavelet abandons the orthonormality con-

dition to get more regularity [6]. That is, the Daubechies-9/7

wavelet is biorthogonal. On the other hand, a class of IIR

wavelet filters has been constructed by using all-pass filters

in Ref. 8, where these two conditions are simultaneously

satisfied. In the design of IIR wavelet filters, the design

method for the maximally flat filters has been proposed in

Refs. 11 and 12, and a closed-form solution has been given.

In Ref. 12, a method for designing filters with arbitrary

flatness has also been presented, and the influence of the

delay elements on the frequency response has been investi-

gated.

In this paper, we present an effective implementation

of the all-pass-based IIR wavelet filters for wavelet-based

image coding. By using IIR filters, both the exactly linear

phase and orthonormality conditions can be simultaneously

satisfied, making better compression performance likely.

Furthermore, IIR filters have a lower computational com-

plexity in implementation and more degrees of freedom in

design than FIR filters. Finally, the proposed IIR wavelet

filters are evaluated by using SPIHT to compress the prac-

tical images, and the influence of the order of all-pass filters

and delay elements on the compression performance is
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investigated. Also, both the compression performance and

computational complexity are compared with the well-

known Daubechies-9/7 wavelet.

2. Wavelet-Based Image Coding

First, we describe the principle of subband coding

shown in Fig. 1. In the analysis stage, an input signal is

decomposed into subband signals by analysis filters. The

resulting subband signals are separately quantized and then

entropy-encoded. In the synthesis stage, the compressed

subband signals are decoded, then the signal is recon-

structed by synthesis filters. Here, the aim of the subband

coding is to minimize the difference between the original

and reconstructed signals with the given compression rate,

or to maximize the compression rate within the given error.

In the wavelet-based image coding scheme, two-band

PR filter banks play a very important role. The input signal

is decomposed into low- and high-frequency components

by a two-band filter bank. Next, the low-frequency compo-

nent is similarly decomposed by using the same filter bank.

By iteration on the low-frequency component, octave de-

composition is obtained. For example, decomposition up to

three levels in one dimension is shown in Fig. 2. In the

synthesis stage, the process is performed in the reverse

order of that in the analysis stage. In two-dimension cases

such as images, decomposition is done separately in the

horizontal and vertical directions, and four-subband images

are obtained. Next, the same process is iterated on the

low-frequency component. Figure 3 is an example of de-

composition up to three level in two dimensions.

3. All-Pass-Based Wavelet Filters

3.1. Design of IIR Wavelet Filters

In the wavelet-based image coding scheme, two-band

PR filter banks play a very important role. To avoid redun-

dancy between subimages, the orthonormality condition is

required for two-band PR filter banks. In addition, the

analysis and synthesis filters are required to have an exactly

linear phase response, since the symmetric extension

method is generally used to accurately handle the bounda-

ries of images [5]. Unfortunately, these two conditions

cannot be simultaneously satisfied by the conventional FIR

wavelet filters, except for the Haar wavelet. The Haar

wavelet is discontinuous and thus is not suitable for com-

pression of natural images [6, 13]. Therefore, a greater

regularity than the Haar wavelet is necessary for compres-

sion of natural images. For example, the Daubechies-9/7

wavelet abandons the orthonormality condition to get more

regularity. On the other hand, these two conditions can be

simultaneously satisfied by IIR filters [8]. The orthonor-

mality condition that wavelet filters must satisfy is

where H0�z� is a low-pass filter and H1�z� is a high-pass

filter. In Refs. 8, 11, and 12, H0�z� and H1�z� are constructed

by all-pass filters as follows:

Fig. 1. Subband coding.

Fig. 2. Wavelet decomposition.

Fig. 3. 2D decomposition.

(1)
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where K is an integer, and the all-pass filter A(z) of order N

is defined by

where filter coefficients an are real. Assume that T�Z� is the

phase response of A(z), that is,

Then the frequency responses of H0�z� and H1�z� are

It is clear that an exactly linear phase response is obtained.

Also, H0�z� and H1�z� in Eq. (2) satisfy the orthonormality

condition of Eq. (1). That is, H0�z� and H1�z� have a power-

complementary relation:

Since H0�z� and H1�z� are designed as a pair of low-pass and

high-pass filters, the desired phase response of A�z� is

where Zp is the band edge frequency of the passband of

H0�z�. A flat frequency response is required from the regu-

larity of the wavelets. For the maximally flat filters, the

filter coefficients ai can be analytically determined [11, 12].

The closed form solution is given by

It has been pointed out in Ref. 12 that the magnitude

response has an undesired ripple in the transition band, as

shown in Fig. 4, when the order N of the all-pass filter is

even and the order of delay elements is K   4k � 1 or

4k � 2. When N is odd and K   4k or 4k � 3, there is

similarly an undesired ripple. To avoid this problem, we

should choose K   4k or 4k � 3 when N is even, and

K   4k � 1 or 4k � 2 when N is odd, where k   0, 1, . . . ,

¬N
2
l.

3.2. Implementation of IIR Wavelet Filters

In this section, we present an effective implementa-

tion of the IIR wavelet filters proposed in Section 3.1 for

wavelet-based image coding. The transfer functions in Eq.

(2) can be realized in the polyphase structure shown in Fig.

5 [2]. In the following, we describe the implementation of

the IIR wavelet filters using the polyphase structure in Fig.

5. First, we assume that x�n� is an input signal of length M,

and that x�n� is a periodic signal of period 2M obtained by

employing the symmetric extension method, whose z trans-

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. 4. Magnitude responses of H0�z� �N   2�.

Fig. 5. All-pass-based filter banks.
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form is X�z�. In the following, a lowercase letter means a

time-domain signal, an uppercase letter is its z transform,

and a superscript tilde denotes a periodic signal. Next, we

demonstrate the decomposition process by the example of

M = 8 and K = 0. As shown in Fig. 6, x�n� is first decimated

to get periodic signals u0�n� and u1�n� with period M. It is

seen in Fig. 6 that u0�n� and u1�n� can be gotten just by

rearranging x�n� in even and odd order. Then, we have the

following symmetrical relation:

that is,

When K z 0, the even samples of the signal are eliminated

if K is even, and the odd samples are eliminated if K is odd.

In every case, the symmetric relation still holds, although

the symmetry point may be different. In general, u0�n� and

u1�n� should be passed through A�z� and A�z�1� to get

v0�n� and v1�n�, respectively. That is,

Thus, from Eq. (11)

that is, 

The subband signals y0�n� and y1�n� can be obtained by

which are dependent on v0�n� only. Therefore, we just need

to pass u0�n� through A�z� to get v0�n�.
Next, we describe the implementation of all-pass

filters A�z�. In general, A�z� is composed of first- and

second-order all-pass filters with real coefficients. In this

paper, we will use the maximally flat all-pass filters A�z� for

image compression. The maximally flat filters are found to

be composed of first-order all-pass filters only:

where Di is a pole of the filter, and is real. The maximally

flat filters designed in Ref. 12 are generally noncausal, and

their poles lie inside and outside the unit circle. Noncausal

all-pass filters can be divided into AS�z� and AU�z�, which

have the poles located inside and outside the unit circle,

respectively. AU�z�1� then becomes

which is causal stable. Therefore, AU�z� can be realized by

reversing the input signal, passing it through causal stable

AU�z�1�, and then re-reversing the output signal, as shown

in Fig. 7.

Fig. 6. Decomposition process.

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Fig. 7. Cascade of all-pass filters.
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Since the all-pass filters are composed of first-order

all-pass filters only, we consider the implementation of

first-order all-pass filters. Typical structures of first-order

all-pass filters are shown in Fig. 8. These three structures

should be chosen according to the practical application,

because the numbers of multipliers, adders, and delay ele-

ments required in these structures are different. In this

paper, we choose the structure in Fig. 8(a) by considering

the computational complexity. Its input�output relation is

given by

where only one multiplier and two adders are needed. Since

the input signal is periodic, we need to compute initial

values d0��1� and d1��1�. These initial values can be com-

puted by

Although L must be L o f in theory, a large L is sufficient

in practice. Experientially, the error caused by the initial

values becomes sufficiently small for L = 20 to 40. Taking

the computation of the initial values into account, the

number of multiplications and additions required for first-

order all-pass filters are 1 � L
M

 and 2 � L � 1
M

, respectively.

Therefore, the number of multiplications NM and the num-

ber of additions NA required in the wavelet filters composed

of all-pass filters of order N are

For example, the computational complexity required in the

case of M = 512, L = 20, N = 2 to 4 is given in Table 1.

4. Experimental Results

To evaluate the proposed IIR wavelet filters, we de-

compose images up to level 6, and then use the SPIHT

proposed in Ref. 10 to compress the practical images. To

save coding/decoding time, we have used the binary-

uncoded version of the SPIHT without arithmetical coding.

It was pointed out in Ref. 10 that the peak signal-to-noise

ratio (PSNR) can be improved by about 0.3 to 0.6 dB with

arithmetical coding, but at the expense of a larger execution

time. The images Barbara, Lena, Boat, and Goldhill of size

512 u 512, 8 bpp are used as test images. The distortion is

measured by the PSNR between the original and recon-

structed images. The IIR wavelet filters used here are the

maximally flat filters.

4.1. Influence of the delay order

It has been pointed out in Section 3.1 that the magni-

tude responses of the filters are strongly influenced by the

delay order K. Here, we investigate the influence of K on

(17)

(18)

(20)

Table 1. Comparison of computational complexity

Fig. 8. Structure of first-order all-pass filters.

(19)
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the compression performance. The results of Barbara ob-

tained with N = 2 and N = 3 are shown in Figs. 9 and 10,

respectively. It is seen that when N is even, K = 0 and K =

3 have a better result than K = 1 and K = 2, while K = 1 and

K = 2 are better when N is odd. It is thought to be due to the

influence of the undesired ripple in the transition band

described in Section 3.1. Also, the compression perform-

ance becomes worse with increasing K. Therefore, we

conclude that the optimal K is K = 0 or 3 when N is even,

and K = 1 or 2 when N is odd. In the following, we choose

K = 0 for even N and K = 1 for odd N.

4.2. Influence of the all-pass filter order

The regularity of wavelets increases with increas-

ing order N of the all-pass filters, but the computational

complexity becomes larger. Thus, it is necessary to in-

vestigate the influence of the filter order on the compres-

sion performance. The results for Barbara are shown in

Fig. 11, where N = 0 corresponds to the conventional

Haar wavelet. It is seen that the compression perform-

ance shows little improvement when the filter order is

above N = 4, so that N = 3 or N = 4 is best. The results

for Lena are shown in Fig. 12. In the case of Lena, since

there are many low-frequency components, the perform-

ance does not improve above N = 3. Therefore, we

conclude that N = 2 or N = 3 is sufficient for most natural

images with predominantly smooth background such as

Lena, and N = 3 or N = 4 for natural images with

high-frequency components such as Barbara.

Fig. 9. Influence of delay order K (N = 2).

Fig. 10. Influence of delay order K (N = 3).

Fig. 11. Influence of all-pass filter order N (Barbara).

Fig. 12. Influence of all-pass filter order N (Lena).
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4.3. Comparison with the conventional

wavelets

In this section, the IIR wavelet filters with N = 2, 3,

4 proposed in this paper are compared with the conventional

FIR wavelet filters. We chose the Daubechies-9/7 wavelet

as a comparison object since it is thought to be among the

best wavelet bases in the case of lossy compression [13].

The comparison of the computational complexity is shown

in Table 1. It is clear that the wavelet filters with N = 2, 3,

4 require fewer multiplications than the Daubechies-9/7

wavelet. However, the filters with N = 3, 4 require more

additions than the Daubechies-9/7 wavelet, although the

filter with N = 2 needs fewer. Therefore, by taking both

multiplication and addition into account, the computational

complexity of the filters with N = 2, 3 is smaller than the

Daubechies-9/7 wavelet, while that for N = 4 is almost the

same. A comparison of the compression performance is

shown in Table 2. It is seen that better results than the

Daubechies-9/7 wavelet are obtained for almost all images.

In particular, the greatest improvement is obtained for

Barbara. For example, it is improved by about 1 dB at a bit

rate of 1 bpp. To measure the subjective visual quality, the

original and reconstructed images of Barbara are shown in

Figs. 13 to 17. Almost no visual differences are found when

the images reconstructed with the Daubechies-9/7 wavelet

Fig. 13. Original image (Barbara).

Table 2. Comparison of coding performance 

(PSNR in dB)

Fig. 14. Reconstructed image with Daubechies-9/7 at

0.50 bpp (31.59 dB).

Fig. 15. Reconstructed image with All-pass-2 at 0.50

bpp (32.24 dB).
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and with N = 2, 3, 4 are compared. Therefore, the IIR

wavelet filters with N = 2, 3, 4 proposed in this paper have

a compression performance comparable to the Daubechies-

9/7 wavelet. For reference, the poles of the all-pass filters

with N = 2, 3, 4 are given in Tables 3 to 5, respectively.

5. Conclusions

In this paper, we have presented an effective imple-

mentation of all-pass-based IIR wavelet filters for image

compression. Since IIR wavelet filters are used, both the

exactly linear phase and orthonormality conditions can be

simultaneously satisfied, and the filters can also be realized

with smaller computational complexity. We have evaluated

the IIR wavelet filters by using SPIHT to compress the

practical images. We have also investigated the influence of

the filter order N and the delay order K on the compression

performance, and have found that the optimal K is K = 0 or

3 when N is even and K = 1 or 2 when N is odd. We have

found from experimental results that filter orders N = 2 to

4 are sufficient for compression of natural images. Finally,

we have shown that the IIR wavelet filters proposed in this

paper have a lower computational complexity than the

Daubechies-9/7 wavelet, with a comparable compression

performance.
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