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SUMMARY

Half-band filters are important for applications to
multirate signal processing and wavelets. Previously, FIR
half-band filters have mainly been treated. However, it
should be recognized that the IIR filter can produce fre-
quency characteristics similar to those of the FIR filter with
a low order. Also, in the applications of filter banks and
wavelets, design of a half-band filter is needed in which the
degree of flatness can be specified arbitrarily. In the present
paper, a new design method is proposed for an IIR half-band
filter with an arbitrary degree of flatness. In the present
design method, the analytical solution of the filter coeffi-
cients is given in the case of a maximally flat filter. Also, in
the case of a specified degree of flatness, the amplitude error
in the stopband can be specified in the design. Further, the
stability of the filter is studied and then the minimum group
delay for causal stability is clarified. Finally, the IIR half-
band filter is applied to the design of a two-channel filter
bank and the effectiveness of the present design method is
proven. © 2003 Wiley Periodicals, Inc. Electron Comm Jpn
Pt 3, 87(1): 10–18, 2004; Published online in Wiley Inter-
Science (www.interscience.wiley.com). DOI 10.1002/
ecjc.10114
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1. Introduction

Half-band filters are important in many applications
such as multirate signal processing and wavelets [1–3].
Many design methods have been proposed to date in regard

to the design of half-band filters [4–13]. In many of these
design methods, the FIR half-band filters have mainly been
dealt with because of such advantages as easy realization
of always stable and perfect linear phase characteristic [4,
5, 10–13]. On the other hand, in comparison with the FIR
filter, the IIR filter can realize the frequency characteristics
similar to those of the FIR filters with a low order. There
are fewer design methods for the IIR half-band filter than
the FIR filter [7–9]. Also, in the applications such as the
filter bank and wavelet, a condition is required from the
regularity condition of the wavelet such that the amplitude
characteristic of the half-band filter is flat [3, 6]. Hence, a
design is needed for a half-band filter for which the degree
of flatness of the amplitude characteristic can be specified
arbitrarily.

In this paper, a new design method is proposed for an
IIR half-band filter with an arbitrary degree of flatness.
First, the relationship of the frequency characteristics in the
passband and in the stopband of the IIR half-band filter is
studied. It is shown that the filter design problem can be
reduced to that of minimization of the maximum amplitude
error. Next, from the specified flatness condition, the con-
ditions to be satisfied by the filter coefficients are derived.
Hence, in the case of the maximally flat filter, the filter
coefficients can be obtained analytically and a closed form
solution is given. Also, in the case of an arbitrarily specified
degree of flatness, the complex Remez exchange algorithm
is applied to the stopband and the maximum amplitude error
in the stopband is specified so that the design problem of
the filter is formulated in a form of linear equation. Hence,
by solving a simple linear equation, the filter coefficients
can be derived easily. After several iterations, an equiripple
solution satisfying the specified maximum amplitude error
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can be obtained. In the present design method, the degree
of flatness of the filter and the maximum amplitude error in
the stopband can be given arbitrarily. Also, stability of the
IIR half-band filter is discussed and the minimum group
delay for causal stability is clarified. Finally, the present
design method is applied to a design of the two-channel
perfect reconstruction filter band so that the effectiveness
of the method is presented.

2. IIR Half-Band Filter

In the time domain, the impulse response h(n) of a
half-band filter must satisfy the following constraint [4, 11]:

where K is the desired group delay of the filter and is an odd
number. Also, in the frequency domain, the desired fre-
quency characteristic for a low-pass filter is

where ωp and ωs are the edge frequencies of the passband
and the stopband while ωp + ωs = π.

The transfer function H(z) of an IIR half-band filter
satisfying the time domain condition in (1) is

where N and M are integers while the filter coefficients an
and bn are real numbers with b0 = 1. From Eq. (3), a new
transfer function Ĥ(z) can be constructed:

Hence, the frequency characteristic of Ĥ(z) is

Also, from Eq. (2), the desired frequency charac-
teristic of Ĥ(z) is

From Eq. (5), the frequency characteristic of Ĥ(z) satisfies
the following relationship:

where x* denotes the complex conjugate of x. Equation (7)
implies that the sum of the frequency characteristics at the
frequency points ω0 and π – ω0 is constant and does not
depend on the filter coefficients an and bm. If ω0 is a
frequency point within the passband, then π − ω0 is found
to be located in the stopband. Hence, from Eq. (7), it is
sufficient to approximate the frequency characteristic of
Ĥ(z) by that either in the passband or in the stopband. In
this paper, the maximum amplitude error in the stopband is
assumed δs. Hence, the maximum amplitude error δp and
the maximum phase error ∆θp in the passband are

Therefore, it is found that the amplitude error and the phase
error in the passband are governed by the maximum ampli-
tude error δs in the stopband. Therefore, the problem of
design of a half-band filter is reduced to the minimization
problem of the amplitude error in the stopband. In what
follows, an approximation of Ĥ(z) in the stopband is con-
sidered.

3. Design of IIR Half-Band Filter

3.1. Maximally flat half-band filter

In the applications of filter banks and wavelets, it is
required that the amplitude characteristic of the half-band
filter be flat based on the regularity condition of the wavelet
[3, 6]. This flatness condition is given by

where L is the degree of flatness of the filter such that
0 ≤ L ≤ N + M + 1. In order to satisfy flatness condition (9),
it is necessary to place L multiple zeros at ω = π. Here, the
frequency characteristic in Eq. (5) is rewritten as

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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where

Therefore, flatness condition (9) is equivalent to

Hence, when the numerator polynomial N(ω) of Ĥ(ejω) is
differentiated r times and is substituted into flatness condi-
tion (12), we obtain

In the case of L = N + M + 1, or the maximally flat filter,
there exists a unique solution to the above linear equations.
When Eq. (13) is solved, the filter coefficients an and bm
can be derived easily. Also, by making use of Cramer’s rule
and the Vandermonde determinant, linear equations (13)
can be solved analytically. The closed form solution is given
by

When M = 0, the FIR maximally flat half-band filter is
obtained and the solution is identical to that in Ref. 12.

3.2. Filter with an arbitrary degree of flatness

As shown in Refs. 9 and 11, the maximally flat filter
has both a passband and stopband that are flat, but the

transition region is wider. Hence, a design is needed for a
filter with a sharper characteristic (namely, a narrower
transition region) while the specified degree of flatness is
satisfied. In the following, the design of a half-band filer
with an arbitrary degree of flatness, namely, the case with
L ≤ N + M, is considered.

3.2.1. Initial values of the independent zeros

Since there are N + M + 1 coefficients in the IIR
half-band filter, the number of independent zeros is N + M
+ 1. As shown in Fig. 1, the number of independent zeros
other than z = –1 is N + M + 1 – L in the case of L ≤ N + M.
In the case of a real coefficient filter, zeros on the unit circle
other than z = ±1 necessarily form complex conjugate pairs.
Therefore, N + M + 1 – L must be an even number. Hence,
N + M + 1 – L = 2I. In order to minimize the amplitude error
in the stopband, it is necessary to place all of these remain-
ing independent zeros on the unit circle in the z plane.
Hence, in the stopband, 2I independent zeros are set as
follows:

From Eq. (4),

If Eq. (16) is separated into the real part and the imaginary
part, we obtain

(10)

(11)

(12)

(13)

(14)

(15)

Fig. 1. Pole-zero locations of IIR half-band filters.

(16)
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When Eqs. (13) and (17) are combined, a total of N + M +
1 linear equations is obtained. Hence, by solving these
linear equations, the initial values of the filter coefficients
an and bm are obtained.

3.2.2. Formulation by complex Remez
algorithm

It is not guaranteed that the amplitude characteristic
of the filter with the filter coefficients obtained in Section
3.2.1 provides equal ripples in the stopband. Hence, in order
to obtain an equiripple characteristic in the stopband, the
filter coefficients obtained in Section 3.2.1 are used as the
initial values and then formulated by means of the complex
Remez exchange algorithm. From the initial values of the
filter coefficients, the frequency characteristic of Ĥ(z) is
derived. In the stopband, I optimum frequency points ωI are
sought as follows and then their phase θ(ωi) is derived:

Next, at these frequency points, the following formulation
is used:

where δ is the specified amplitude error and is known.
Hence, the design is performed with

However, the stopband edge frequency ωs cannot be speci-
fied here. When Eq. (5) is substituted into Eq. (19), the
following is obtained:

If Eq. (21) is separated into the real part and the imaginary
part, we have 

When Eqs. (13) and (22) are combined, N + M + 1 linear
equations are obtained. Hence, by solving these linear
equations, the filter coefficients an and bm are derived. With
the obtained filter coefficients, the frequency characteristic
of Ĥ(z) is derived and the optimum frequencies Ωi are
sought in the stopband and the phase θ(Ωi) is computed. As
a result, it is not always the case that the frequency points
ωi and the optimum frequency points Ωi coincide. There-
fore, the obtained optimum frequency points Ωi are used as
the sample frequency points ωi the next time, and Eqs. (13)
and (22) are solved again to derive the filter coefficients.
This process is repeated in the iterative calculations. Once
the sample frequency points ωi and the optimum frequency
points Ωi coincide, the equiripple characteristic in the stop-
band is presumed to have been obtained. In this paper, the
filter coefficients obtained in Section 3.2.1 are used as the
initial values, and the design algorithm converges after
several iterations.

3.2.3. Design algorithm

1. Provide the order of the numerator N, the order of
the denominator M, the desired group delay K, the degree
of flatness L, and the maximum amplitude error δ in the
stopband.

2. The initial zeros ω̂i in the stopband are set at an
equal interval as in Eq. (15).

3. By solving linear equations (13) and (17), the
initial values an and bm of the filter coefficients are derived.

4. With the obtained an and bm, the frequency charac-
teristic of Ĥ(z) is derived. In the stopband, the optimum
frequency points Ωi are sought and the phase θ(Ωi) is
computed.

5. Let ωi = Ωi (i = 1, 2, . . . , I).
6. By solving linear equations (13) and (22), the filter

coefficients an and bm are derived.
7. With the obtained an and bm, the frequency charac-

teristic of Ĥ(z) is derived, the optimum frequency points
Ωi are sought in the stopband, and the phase θ(Ωi) is
computed.

8. If |Ωi − ωi| ≤ ε (i = 1, 2, . . . , I) is satisfied, the
process is completed. Otherwise the process is returned to

(17)

(18)

(20)

(19)

(21)

(22)
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5. Here, ε is the allowable convergence value given (in
general ε = 1.0 × 10–10).

4. Filter Stability

For the filter to be causally stable, all poles must be
located within the unit circle. In the design of a digital filter,
it is known that the group delay increases if more poles of
the filters are located inside the unit circle rather than
outside the unit circle. Hence, if all poles are placed in the
unit circle, it is necessary to provide a group delay larger
than a certain value. In this paper, the stability of the IIR
half-band filter designed here is studied by changing the
group delay K. Table 1 shows the minimum desired group
delay Kmin when the IIR half-band filter is causally stable.
First, for M = 0, the filter is always stable because it is a FIR
half-band filter. In order to satisfy causality, the minimum
group delay is Kmin = 1. Next, in the case of M = N, the filter
coefficients in the numerator and denominator become
symmetric by virtue of Eq. (14), so that a half-band filter
using an all-pass filter is realized [7, 8]. Thus, the minimum
group delay for a stable operation is Kmin = 2N – 1. Also, in
the case of 0 < M < N, it is found that N ≤ Kmin ≤ 2N – 1.
On the other hand, in the case of M > N, it is found that 2N
– 1 ≤ Kmin ≤ 2N + 1. There is no stable filter for M >> N. In
Table 1, this is indicated by ×. In this case, no stable filter
is obtained even if the group delay is made large.

5. Applications to Filter Bank

Recently, research on filter banks and wavelets has
been carried out vigorously and has been applied in various

areas of signal processing [3, 6]. Here, as an application
example of the IIR half-band filter, a design of a two-chan-
nel filter bank is described.

In this paper, the method of design of the IIR half-
band filter described in Section 3 is applied to the two-chan-
nel perfect reconstruction filter bank proposed in Ref. 7. In
the two-channel filter bank, if H0(z) and H1(z) are consid-
ered to be decomposition filters and G0(z) and G1(z) are
combining filters, then the perfect reconstruction condition
of the filter bank is

where K0 is an integer. From Ref. 7,

is used, so that perfect reconstruction condition (23) can be
satisfied. Here, K1 and K2 are integers such that K0 = K1 +
K2. Also, P(z) and Q(z) are assumed to be IIR filters.

5.1. Design of a high-pass filter

Next, the design of a high-pass filter H1(z) is de-
scribed. From Eq. (24), the transfer function of H1(z) is

Table 1. Minimum desired group delay Kmin for stable IIR half-band filters

(23)

(24)

(25)

14



Here,

From Eq. (26), Ĥ1(z) becomes an IIR half-band filter.
Hence, by using the design method described in Section 3,
Ĥ1(z) is designed as a low-pass filter, and a high-pass filter
H1(z) can then be obtained from Eq. (25).

5.2. Design of a low-pass filter

Next, let us present the design of a low-pass filter
H0(z). As shown in Ref. 7, H0(z) becomes a half-band filter
similarly. Therefore, it can be designed by the design
method presented in Section 3. However, since H0(z) is
affected by H1(z), equiripple characteristics are not guaran-
teed in the stopband [9, 11]. Hence, to make the amplitude
of H0(z) equiripple, the effect of H1(z) is taken into
account and H0(z) is designed as a low-pass filter as
follows:

In the stopband of H0(z), the amplitude of Ĥ1(−z) is ideally
constant. In practice, however, error exists. Hence, when
H0(z) is designed by using the complex Remez exchange
algorithm, the formulation is carried out with Ĥ0(z) in Eq.
(27) containing Ĥ1(−z). Then, an equiripple characteristic
can be obtained in the stopband [9, 11].

6. Design Examples

[Design example 1] The order of the numerator N =
8, the order of the denominator M = 2, the desired group
delay K = 13, the degree of flatness L = 3, and the maximum

amplitude error δ = 2.0 × 10–3 are given to design an IIR
half-band filter. Its impulse response is shown in Fig. 2. It
is found that an IIR half-band filter satisfying the time
domain condition and causality stability is obtained. The
amplitude characteristics and the group delay charac-
teristics of the obtained filter are shown with solid lines in
Figs. 3 and 4. Also, the amplitude and group delay charac-
teristics are presented for δ = 5.0 × 10–3 and δ = 8.0 × 10–4.
From Figs. 3 and 4, it is found that the specified design
conditions are satisfied and the transition region becomes
narrower as the specified error becomes larger.

[Design example 2] The order of the numerator N =
5, the order of the denominator M = 3, the desired group
delay K = 9, the maximum amplitude error δ = 1.0 × 10–2,
and the degree of flatness L = 5 are provided and an IIR
half-band filter is designed. From Table 1, the obtained IIR
half-band filter becomes stable if the desired group delay is
more than K = 7. The amplitude and group delay charac-

(26)

(27)

Fig. 2. Impulse response of IIR half-band filter in
Example 1.

Fig. 3. Magnitude responses of IIR half-band filters in
Example 1.

Fig. 4. Group delay of IIR half-band filters in Example 1.
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teristics of the obtained filter are shown with solid lines in
Figs. 5 and 6. The amplitude and group delay characteristics
for L = 1 and L = 9 are also provided. In the case of L = 9,
an IIR maximally flat half-band filter is obtained and the
transition region is the widest. The pole and zero locations
of this maximally flat filter are shown in Fig. 7.

[Design example 3] The order of the numerator N1 =
6 and the order of the denominator M1 = 2 for P(z) and the
order of the numerator N2 = 7 and that of the denominator
M2 = 2 for Q(z), the degree of flatness L1 = 3 for H1(z), that
of flatness L2 = 2 for H0(z), their group delays K1 = 4 and
K2 = 11, and the maximum amplitude errors of δ1 = 2.0 ×
10–3 and δ2 = 4.0 × 10–3 are given and a two-channel filter
bank is designed. Here, from Table 1, the obtained filter
bank is stable. The amplitude characteristic of the decom-
posing filter is shown in Fig. 8 while the group delay
characteristic is shown in Fig. 9. When the group delay of

Fig. 6. Group delays of IIR half-band filters in Example 2.

Fig. 7. Pole-zero location of the maximally flat IIR
half-band filter in Example 2.

Fig. 8. Magnitude responses of analysis filters in
Example 3.

Fig. 5. Magnitude responses of IIR half-band filters in
Example 2.

Fig. 9. Group delays of analysis filters in Example 3.
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H0(z) is K2 = 10, the corresponding amplitude and group
delay characteristics are shown with dotted lines. It is seen
from Fig. 8 that the overshoot of H0(z) in the transition
region can be suppressed by controlling the group delay K2
of H0(z).

7. Conclusions

In this paper, a new design method is proposed for an
IIR half-band filter that provides an arbitrary given degree
of flatness and can be designed with a specified maximum
amplitude error in the stopband. First, the relationship of
the frequency characteristics of the IIR half-band filter in
the passband and the stopband is studied. It is shown that
the problem of filter design can be reduced to that of the
minimization of the maximum amplitude error in the stop-
band. Next, it is shown that a maximally flat half-band filter
can be obtained analytically by imposing the flatness con-
dition on the stopband of the filter. In the case where the
degree of flatness is arbitrary, the complex Remez exchange
algorithm is applied to the stopband so that the filter design
problem is formulated in the form of linear equations.
Hence, by solving simple linear equations, the filter coeffi-
cients can be derived easily. After several iterations, an
equiripple solution satisfying the specified maximum am-
plitude error can be obtained. The unique feature of the
proposed design method is that the degree of flatness of the
filter and the maximum amplitude error in the stopband can
be given arbitrarily. Also, the stability of the IIR half-band
filter is discussed. The minimum group delay for a causally
stable filter is clarified. Finally, the present design method
is applied to the design of a two-channel perfect reconstruc-
tion filter bank so that the effectiveness of the method is
demonstrated.
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