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SUMMARY

Digital filters with a linear phase characteristic are
needed in many applications for signal processing. In this
paper, design of a Chebyshev-type IIR filter with approxi-
mate linear phase characteristics in the passband is de-
scribed. First, it is shown that a flat stopband can easily be
realized by placing multiple zeros at the specified frequency
points in the stopband. Next, the complex Remez exchange
algorithm is applied to the passband so that the filter design
problem is formulated as an eigenvalue problem. Hence, by
solving the eigenvalue problem, the filter coefficients can
be derived easily. Further, by means of iterative calcula-
tions, an equiripple characteristic of the error function in
the passband is obtained. Finally, it is shown that a reverse
Chebyshev-type IIR filter with an approximate linear
phase characteristic can also be obtained by parallel
connection of the proposed Chebyshev-type filter and a
delay line. © 2003  Wiley Periodicals, Inc. Electron
Comm Jpn Pt 3, 87(2): 1–9, 2004; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI
10.1002/ecjc.10133

Key words: IIR digital filter; Chebyshev-type fil-
ter; approximate linear phase characteristic; eigenvalue
problem; complex Remez exchange algorithm.

1. Introduction

Like analog filters, digital filters are classified into
four types—maximally flat type, Chebyshev type, reverse

Chebyshev type, and elliptic type—and are widely used in
many applications [1, 2]. The maximally flat filter has flat
characteristics both in the passband and in the stopband
while the elliptic-type filter has equiripple characteristics in
both stop- and passbands. On the other hand, the Cheby-
shev-type and reverse Chebyshev-type filters have an
equiripple characteristic in either the pass- or stopband but
have a flat characteristic in the other. These filters are
needed in many image processing applications in order to
suppress ringing and chessboard distortion [2, 3]. In the
design of these digital filters, the most general way is to
make use of conventional analog filters [1, 2]. However, IIR
filters obtained from analog filters by the s–z transform
have the same orders in the numerator and the denominator.
In addition, the phase characteristics of the filter cannot be
specified [1, 2]. Hence, it is necessary to design the digital
filters directly in the z domain. Many design methods have
been proposed to date [4–14]. Among them, there are
design methods taking into consideration the phase charac-
teristics of the passband at the same time [7, 12, 14]. The
linear phase characteristic of the filter is needed in many
applications for digital signal and image processing. As is
well known, a perfect linear phase characteristic can easily
be realized in an FIR filter by imposing a symmetry condi-
tion on the filter coefficients [8, 11]. In the case of an IIR
filter, a perfect linear phase characteristic cannot be realized
due to causality. In addition to the amplitude characteristic,
the phase characteristic must be approximated [7, 12, 14].
Hence, let us consider the design of Chebyshev-type IIR
filters with an approximately linear phase characteristic in
the passband.

In this paper, a design method is presented for a
Chebyshev-type IIR linear phase filter with a flat charac-
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teristic in the stopband and an equiripple characteristic in
the passband. In the present design method, it is shown that
a flat characteristic in the stopband can easily be realized
by placing multiple zeros at specified frequency points in
the stopband. Hence, the filter design problem is reduced
to a problem of approximation of the frequency charac-
teristic in the passband. Next, the complex Remez exchange
algorithm is applied to the passband, formulating the filter
design problem in the form of a generalized eigenvalue
problem [14]. The eigenvalue minimizing the maximum
amplitude of the error function is derived. Its corresponding
eigenvector specifies the filter coefficients. Further, by re-
peating the above calculation process, an equiripple char-
acteristic of the error function in the passband can be
obtained. It is also shown that a reverse Chebyshev-type IIR
filter with an approximately linear phase characteristic in
the passband can be realized at the same time by parallel
connection of the proposed Chebyshev-type filter and a
delay section. Finally, design examples of the IIR Cheby-
shev-type low-pass filter and stopband filter are presented,
clarifying the usefulness of the present design method.

2. The Chebyshev-Type IIR Filter

The transfer function H(z) of the IIR digital filter is
defined as follows:

where N and M are the orders of the numerator and the
denominator. The filter coefficients an and bn are real and
b0 = 1.

In the Chebyshev-type filter, the amplitude charac-
teristic is required to be flat in the stopband. Hence,

where ωs is the frequency point specified in the stopband
and K is a parameter expressing the flatness. Also, in the
passband, the desired frequency characteristic of the filter
is Hd(e

jω), so that

where |Hd(e
jω)| is the desired amplitude characteristic in the

passband and θd(ω) is the desired phase characteristic. In

the case of a linear phase filter, θd(ω) has linear phase and
the group delay is constant.

The difference between the frequency characteristic
of the filter and the desired frequency characteristic is the
error function E(ω) defined as

where W(ω) is a weighting function. Hence, the design
target is to minimize the maximum amplitude of the error
function E(ω). Therefore,

3. Design of IIR Low-Pass Filter

Let us next describe the design of an IIR low-pass
filter. The flatness condition in the stopband is given by Eq.
(2). Here, ωs = π in the case of the low-pass filter. To satisfy
this flatness condition, it is necessary to place K multiple
zeros at ω = π. Hence, the transfer function H(z) is

If transfer function (6) is used, it is found that the flatness
characteristic in the stopband can be realized. Therefore,
the problem of design of a low-pass filter is reduced to the
problem of approximation of the frequency characteristic
in the passband.

3.1. Setting of the initial value

The desired frequency characteristic of a linear phase
filter in the passband is

where τ is the desired group delay and ωp is the passband
edge frequency. In transfer function (6), the number of
unknown filter coefficients is J = M + N – K + 1. First, L =
JJ / 2j initial frequency points ωi (ωp > ω1 > ω2 > . . . >
ωL ≥ 0) are selected in the passband [0, ωp]. Here, ∗j
denotes the minimum integer larger than *. If J is even, ωi
(ωL ≠ 0) is selected at equal intervals as shown in Fig. 1(a).
If J is odd, ω̂i is selected from ωL = 0 as shown in Fig. 1(b).
Next, since the design target is minimization of the maxi-
mum amplitude of the error function, the amplitude of the
error function at these frequency points ωi is zero:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

2



When Eq. (8) is substituted into Eq. (7), we have

Here, D(ω) = (2cos ω
2
)K. Since b0 = 1, Eq. (9) is separated

into the real part and the imaginary part:

If J is even, the numbers of Eqs. (10) and (11) are L in both
cases so that the total is 2L = J. If J is odd, ωL = 0, the number
of Eqs. (11) is one fewer than the number of Eqs. (10) and
is L – 1. Therefore, the total is 2L – 1 = J. Hence, by solving
Eqs. (10) and (11), the filter coefficients cn and bm are
uniquely determined.

3.2. Formulation by complex Remez exchange
algorithm

From the filter coefficients obtained in Section 3.1,
the error function E(ω) is derived and its extremum fre-
quency points ωi (ωp = ω1 > ω2 > . . . ≥ 0) are sought. As a
result, the obtained error function is not necessarily an
equiripple characteristic. Hence, by using the complex Re-
mez exchange algorithm, a formulation is carried out to
make the function an equiripple characteristic. As shown in
Fig. 1, the number of extremum frequency points ωi is L +
1 if J is even and L if J is odd (including the passband edge
frequency ωp). Let θe(ωi) be the phase of the error function
at the extremum frequency points ωi. At these extremum
frequency points ωi, the amplitudes of the error function are
made equal in the formulation:

where δ is the amplitude of the error function. Hence, if Eq.
(12) is separated into the real part and the imaginary part,
the following are obtained:

It is found from Fig. 1 that the number of Eqs. (14) is fewer
by one than the number of Eqs. (13) because ωL+1 = 0 if J
is even. Hence, when Eqs. (13) and (14) are combined, there
are 2L + 1 = J + 1 equations. When J is odd, the total is 2L
= J + 1, because ωL > 0. Hence, the number of Eqs. (13) and
(14) is J + 1 in each case regardless of whether J is even or
odd. If Eqs. (13) and (14) are expressed in matrix form, they
are reduced to the following generalized eigenvalue prob-
lem [14]:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Fig. 1. Selection of initial frequency points for low-pass
filters. (a) Even J; (b) odd J.
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where x = [b0, b1, . . . , bM, c0, c1, . . . , cN−K]T. The elements
Pij and Qij of the matrices P and Q are

for 0 ≤ i ≤ L − 1, 0 ≤ j ≤ M,

for 0 ≤ i ≤ L − 1, M + 1 ≤ j ≤ J,

for L ≤ i ≤ J, 0 ≤ j ≤ M, and

for L ≤ i ≤ J, M + 1 ≤ j ≤ J.

Therefore, solving eigenvalue problem (15) and de-
riving the eigenvalue minimizing the amplitude δ of the
error function yields the corresponding eigenvector that
provides the filter coefficients bm and cn. From the obtained
filter coefficients, the error function is calculated and a new
extremum frequency point ωi is sought. Then, the phase
θe(ωi) of the error function at such a frequency point is
derived. These extremum frequency points are replaced as
the sample frequency points of the next iteration. Then, an
iterative calculation is carried out until the error function
becomes an equiripple characteristic. As shown in Ref. 14,
the design algorithm described above uses the complex
Remez exchange algorithm so that convergence is not guar-
anteed. Depending on the design specification, conver-
gence may not be reached. Convergence of the algorithm
strongly depends on the initial values described in Section
3.1. Good convergence has been confirmed in many design
examples. If there is a case of nonconvergence, the initial
frequency points ωi may be set nearer to the edge of the
passband instead of equally spaced, so that convergence can
be improved. A specific design algorithm is presented be-
low.

3.3. Design algorithm

(1) Provide the orders N and M of the numerator and
denominator, the flatness K, the desired group delay τ, and
the passband edge frequency ωp.

(2) Set L initial frequency points ω̂i in the passband
as shown in Fig. 1.

(3) By solving linear Eqs. (10) and (11), the filter
coefficients cn and bm are derived. Then, the extremum
frequency points ωi of E(ω) are sought and the phases
θe(ωi) are computed.

(4) The matrices P and Q are computed and eigen-
value problem (15) is solved, deriving the filter coefficients
cn and bm.

(5) Using the obtained cn and bm, the extremum
frequency points Ωi are sought and the phases θe(ωi) are
derived.

(6) The process is terminated if |Ωi − ωi| < ε. Other-
wise, proceed to the next step. Here, ε is the specified
convergence tolerance value and is usually ε = 10–10.

(7) With ωi = Ωi, the process returns to step (4).

3.4. Stability of the IIR filter

In the design algorithm presented in Section 3.3, the
stability condition of the IIR filter is not considered as a
design condition. Hence, there is a possibility that the
designed IIR filter may be unstable. However, as is proved
in Refs. 4 and 5, the stability of the IIR filter depends on
the design specifications. Hence, if a group delay of more
than a certain value is given, stability can be guaranteed.
Hence, when design specifications are given, a stable IIR
filter can be designed provided that a sufficiently large
group delay is given. For a specific design example, Ref.
14 should be consulted.

4. Design of IIR Stopband Filter

In Section 3, the design of a low-pass filter is de-
scribed. A high-pass filter can be derived from the designed
low-pass filter by frequency transformation. Hence, a high-
pass filter can be readily obtained by changing z to –z in the
transfer function. In the following, the design of an IIR
stopband filter is considered. The flatness condition in the
stopband can be defined by Eq. (2), where 0 < ωs < π. In
order to satisfy the flatness condition of the stopband, it is
necessary to place K zeros at ω = ±ωs:

(15)

(16)
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By using transfer function (16), a flat stopband can be
realized. The desired frequency characteristic Hd(e

jω) in the
passband is

In the case of a real coefficient filter, the phase of the filter
at ω = π is θ(π) = nπ (n is an integer). Therefore, it is
necessary that θ0 = (n + τ)π. Therefore, the complex Remez
exchange algorithm can be applied to the passband for
design as in the case of the low-pass filter. Here, in the case
of the stopband filter, there are two passbands. The setting
of the initial frequency points is shown in Fig. 2. The
number of unknown filter coefficients in Eq. (16) is J = M
+ N – 2K + 1. If J is even, then L of ω̂i are selected such that
0 < ω̂i < π. The number of generated extremum frequency
points ωi is L + 2 (including ωi = 0 and π). Since the number
needed for the formulation by the complex Remez ex-
change algorithm is L + 1, either ωi = 0 or ωi = π with a
smaller amplitude of the error function is eliminated. The
remaining L + 1 extremum frequency points are used as the
sample frequency points. When J is odd, either ωi = 0 or
ωi = π is selected and then L sample frequency points are
selected such that ωi ≠ 0, π from the generated extremum
frequency points. Also, with regard to the bandpass filter,
the design method described above cannot be applied di-
rectly; this situation will be studied in the future.

5. The IIR Reverse Chebyshev-Type Filter

A Chebyshev-type filter H(z) designed by the above
design method and a delay line z–1 are connected in parallel
as shown in Fig. 3 to construct a new filter G(z). The transfer
function of G(z) is

where I is an integer. Now H(z) is designed by letting the
desired group delay be τ = I. In the case of the stopband
filter, let θ0 = 0. Hence, it is found from Eq. (18) that the
passband of H(z) becomes the stopband of G(z) with an
equiripple characteristic. Also, the amplitude of H(z) is 0 in
the stopband. Therefore, this band becomes the passband
of G(z). Since H(z) has a flat characteristic in the stopband,
the amplitude characteristic |G(ejω)| and the group delay
τ(ω) of G(z) satisfy

and are flat. Hence, an IIR reverse Chebyshev-type filter
with a flat group delay can be realized at the same time.
However, since the desired group delay τ is limited by the
integer I, a reverse Chebyshev-type filter with a noninteger
delay cannot be designed with this configuration.

6. Design Examples

[Design Example 1] As the design specifications, let
N = 15, M = 6, K = 10, and ωp = 0.3π. Then, a Chebyshev-
type low-pass filter with τ = 12 is designed. The amplitude
characteristic of the error function of the obtained filter is
plotted in Fig. 4 as the solid line. It is found that an

(17)

Fig. 2. Selection of initial frequency points for
bandstop filters. (a) Even J; (b) odd J.

(18)

Fig. 3. Parallel connection of H(z) and a delay section.

(19)

(20)
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equiripple characteristic is realized. The amplitude charac-
teristics of the error functions of the filters designed with τ
= 10.5 and τ = 13.5 are also presented. The amplitude and
group delay characteristics of these filters are shown in
Figs. 5 and 6. All of the obtained filters are stable. The
pole-zero locations of the filter with τ = 12 are shown in
Fig. 7. Also, from the Chebyshev-type low-pass filter H(z)
with τ = 12, a reverse Chebyshev-type high-pass filter G(z)
is derived. The amplitude and group delay characteristics
of G(z) are shown in Figs. 8 and 9.

[Design Example 2] As the design specifications, let
N + M = 19, K = 10, τ = 11, and ωp = 0.48π. Design examples
of Chebyshev-type low-pass filters with N and M varied are
shown. In the case of M = 0, this yields an FIR filter. Since
the group delay is not half the order, the filter is not a

Fig. 5. Magnitude responses of low-pass filters in
Example 1.

Fig. 6. Group delays of low-pass filters in Example 1.

Fig. 7. Pole-zero location of low-pass filter in Example 1.

Fig. 8. Magnitude response of high-pass filter in
Example 1.

Fig. 4. Magnitude responses of error functions in
Example 1.
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Fig. 9. Group delay of high-pass filter in Example 1.

Fig. 10. Magnitude responses of error functions in
Example 2.

Fig. 11. Magnitude responses of low-pass filters in
Example 2.

Fig. 12. Group delays of low-pass filters in Example 2.

Fig. 13. Magnitude response of error function in
Example 3.

Fig. 14. Magnitude responses of bandstop and bandpass
filters in Example 3.
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perfectly linear phase FIR filter. The amplitude charac-
teristic of the error function of the designed filter is shown
in Fig. 10, where it is seen that an equiripple characteristic
can be obtained. In comparison with the FIR filter with M
= 0, the filter with M = 4 has the smallest error. The
amplitude and group delay characteristics of the obtained
low-pass filter are shown in Figs. 11 and 12. The IIR filters
with M = 2 and M = 4 are found to have smaller amplitude
and group delay errors than the FIR filter with M = 0.

[Design Example 3] As the design specifications, let
N = M = 10, K = 3, τ = 8, θ0 = 0, ωp1 = 0.2π, ωp2 = 0.8π,
and ωs = 0.48π. Then, a Chebyshev-type stopband filter is
designed. In this design example, four initial frequency
points ωi are placed in the passband [0, ωp1] and another
four in the passband [ωp2, π]. The amplitude characteristic
of the error function of the designed filter is shown in Fig.
13 and is found to be of equiripple type. The amplitude and
group delay characteristics of the filter are plotted in Figs.
14 and 15 as solid lines. The amplitude and group delay
characteristics of the reverse Chebyshev-type bandpass fil-
ter G(z) obtained from Eq. (18) are plotted in Figs. 14 and
15 as dotted lines.

7. Conclusions

In this paper, a design method has been proposed for
a Chebyshev-type IIR filter with an approximately linear
phase characteristic in the passband. In this design method,
it is first shown that a flat characteristic in the stopband can
be easily realized by placing multiple zeros at the specified
frequency points in the stopband. Next, the complex Remez
exchange algorithm is applied to the passband and the filter
design problem is formulated in the form of a generalized
eigenvalue problem. Hence, by solving the eigenvalue
problem, the filter coefficients can be readily obtained.

Further, by iterative calculations, an equiripple charac-
teristic of the error function in the passband can be obtained.
In addition, by parallel connection of the proposed Cheby-
shev-type filter and a delay section, a reverse Chebyshev-
type IIR filter with an approximately linear phase
characteristic in the passband can be realized at the same
time. Finally, design examples are presented for IIR Che-
byshev-type low-pass filters and a stopband filter, demon-
strating the usefulness of the present design method. Future
topics of study include the design of a reverse Chebyshev-
type linear phase filter with noninteger delay.
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