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SUMMARY

As an interpolation filter for sampling rate transfor-
mation, a half-band filter with a reduced amount of compu-
tation is often used. Due to the restrictions on its amplitude
characteristic, it is not possible to sufficiently reduce the
quantization noise of the transition region of the filter. In
this paper, the output SNR of the L-interpolator filter is
analyzed with a quantized band-limited signal as the input.
A design method is proposed for the linear phase FIR filter
maximizing the output SNR. For the design, both the SNR
maximizing design within the Type I FIR filters and one
supplemented with the restriction of the L-th band filter are
presented. Each design is reduced to derivation of the
solution of a system of linear equations with a coefficient
matrix represented analytically. The filter based on the
proposed method can attain an SNR not attainable under
the sacrifice of the order in the conventional filter taking
into account only the passband and the stopband. © 2005
Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 89(1):
31–46, 2006; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/ecjc.20178
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1. Introduction

Increasing the sampling rate by the interpolation
method is one of the basic techniques for multirate signal
processing. In general, when the sampling rate is increased,
an interpolation filter is used in which null samples are
inserted between the samples by the up-sampler and then
the imaging components are eliminated by a low-pass filter
[1]. Figure 1 shows an interpolator that increases the sam-
pling rate by a factor of L, a positive integer, by a cascade
connection of an L up-sampler and an interpolation filter
H(z). It is usual to use a linear phase FIR filter with a
passband gain of L as an interpolation filter. In particular,
when the sampling rate is doubled, FIR half-band filters,
which are advantageous with regard to the amount of com-
putation because about half of the coefficient values be-
come zero, are often used [3, 7, 9]. In this case, a filter
design specification to control the amplitude characteristics
in the passband and the stopband is used, such as an
equal-ripple design specification minimizing the maximum
approximation error in the passband and the stopband. On
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Fig. 1. An L-interpolator.
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the other hand, with such specifications, the amplitude
characteristics in the transition region cannot be controlled
directly. Also, the amplitude characteristic is forced to be
odd symmetric with regard to the normalized angular fre-
quency π/2.

In a real digital signal processing system, the input
signal to the interpolation filter is band-limited and quan-
tized. For instance, in the case of audio CDs, the bandwidth
is up to 20 kHz at the maximum but the signal is sampled
at a sampling rate of 44.1 kHz and is quantized into 16 bits
in a fixed point representation [4]. When the sampling rate
of such a digital signal is doubled by using the configuration
in Fig. 1, the input signal component reaching the interpo-
lation filter H(z), excluding the image and the quantization
noise, is band-limited to the lower frequency side of π/2⋅ (2
⋅ 20/44.1), which is even lower than π/2. More generally, it
can be stated that the signal is band-limited to the frequency
range of [0, απ/2), where α is the band-limiting coefficient
with 0 < α < 1. On the other hand, quantization noise is
considered to exist at the input of the interpolation filter in
the entire range of the frequency domain. This situation is
modeled in Fig. 2, where the stippling indicates the quan-
tization noise, the solid trapezoid the signal components to
be passed, and the dashed trapezoid the imaging compo-
nent.

Let us assume that an FIR half-band filter is used as
an interpolation filter for the quantized band-limited signal.
Of the quantization noise, the component located in the
stopband of the interpolation filter is sufficiently sup-
pressed if the stopband attenuation of the filter is sufficient.
Hence, an increase of the filter order to make the amplitude
characteristic in the stopband approach the ideal one is
effective for suppression of quantization noise in the stop-
band. On the other hand, of the quantization noise, the
component in the transition region (with the angular fre-
quency ω near π/2) is not necessarily suppressed by increas-
ing the order of the filter [6, 10]. This can be understood
from the fact that the amplitude characteristics (2 for ω ∈
[0, π/2) and 0 for ω ∈ (π/2, π]) that divide the frequency

domain ideally into two let the component located in the
frequency range of ω ∈ [απ/2, π/2) pass without suppres-
sion. Hence, a half-band filter, even an ideal one, is not
optimum for the objective of maximizing the signal-to-
noise ratio (SNR) after interpolation of the quantized band-
limited signal.

This paper treats the problem of maximizing the SNR
at the output by optimization of the interpolation filter in
the case where the quantized band-limited signal is L-inter-
polated. A design method for the interpolation filter is
proposed that provides the best SNR in the output by an
optimization of the interpolation filter with a given order.
In Section 2, the method of evaluation of the noise at the
output of the interpolation filter is described. The definition
of the output SNR in the time domain is established. In
Section 3, based on the analysis of the multirate random
signals according to Sathe and Vaidyanathan [5] and Tuqan
and Vaidyanathan [8], the output SNR defined in the time
domain is transformed to a theoretical SNR equation in the
frequency domain described by the frequency charac-
teristics of the interpolation filter. The validity of the theo-
retical SNR equation derived is verified in Section 4 by
comparison with a simulation based on the SNR definition
in the time domain. In Section 5, the design method of the
linear phase FIR filter which maximizes the theoretical
SNR equation derived  is proposed. The design problem is
reduced to the least squares problem and the filter coeffi-
cients can be obtained by solving a system of linear equa-
tions. The design method is presented for the case in which
the condition of the L-th band filter is imposed and not
imposed. Comparisons of the output SNR performance
between the proposed method, the conventional method,
and the filter design example are presented in Section 6.

2. Definition of Output SNR in the Time
Domain

In this section, an evaluation method is presented for
the output error of the L-interpolation filter for the quan-
tized band-limited signal and the output SNR is defined in
the time domain.

2.1. Output error of the interpolator

Let us first consider output error evaluation for the
interpolation filter in the absence of the quantization error.
In the L-interpolator in Fig. 1, the number of samples at the
output is L times the number of samples at the input. Hence,
in order to evaluate the output error of this interpolator, the
configuration in Fig. 3 is used. The original signal y[m] is
L-down-sampled to x[n], which is input into the interpolator
to be evaluated. By means of the L-up-sampler of the

Fig. 2. Frequency spectrum characteristics of the input
signal of the interpolation filter.
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interpolator, the signal u[m] with the same number of
samples as the original signal is obtained. This becomes the
input to the interpolation filter H(z). The following quantity,
obtained by subtracting the output y~[m] of the interpolation
filter from the original signal,

is the result of the deviation of the characteristic of the
interpolation filter from the ideal one and let us call it the
filtering noise. Its square ef[m]2 can be used to evaluate the
magnitude of the output error. This depends on the original
signal y[m] and the time m. They must be defined appropri-
ately for evaluation of the interpolation filter H(z).

2.2. Reference input signal

The original signal y[m] must be one that is band-lim-
ited in the frequency range of [0, απ/2) and can evaluate the
output error of H(z) in a uniform manner. Hence, the real-
valued random signal y[m] obtained by ideally band-limit-
ing the white noise w[m] to the lower frequency side of απ/L
is defined as the original signal. This is called the reference
input signal. This y[m] is a weakly stationary WSS (Wide
Sense Stationary) process. Hence, the expectation value of
the autocorrelation

is defined independently of m and the spectral power den-
sity function

is defined. The power spectral density of the white noise
w[m] prior to band limitation is expressed in terms of the
variance σw

2  as

Then, the power spectral density function Syy(e
jω) of y[m]

obtained by ideally band-limiting the above is

2.3. Quantization noise

The quantization noise caused by rounding real-val-
ued y[m] to a fixed point number whose fractional part has
a bit length of b is modeled as additive noise q[m]. Figure
4 shows the method of evaluation of the output error from
the interpolator in the presence of quantization noise. In the
figure, q~[m] is the response to q[m] of the cascade connec-
tion of the down-sampler, up-sampler, and interpolation
filter H(z), and

is the output of the interpolation filter H(z). The output error
considering both the filtering noise and the quantization
noise is

(1)

(2)

(3)

(4)

Fig. 3. Output error assessment of an interpolator in the absence of quantization noise.

Fig. 4. Output error assessment of an interpolator in the presence of quantization noise.

(5)

(6)

33



With regard to the quantization error q[m], the fol-
lowing assumption is used: q[m] is a white noise inde-
pendent of w[m] and its power spectral density is

Also, it is assumed that y[m] and q[m] are jointly WSS
processes. The definition of the jointly WSS characteristic
will be given in the next section.

If w[m] takes a real value in (–1, 1) and y[m] is
rounded by quantization so that its fractional part is of
length b bits, then the following holds:

2.4. Definition of the output SNR in the time
domain

With the above setting, it appears appropriate to
define the output SNR of the interpolation filter by taking
the energy ratio y[m]2/e[m]2 of the output error signal e[m]
in Eq. (6) and the reference input signal y[m] and consider-
ing its expectation. However, due to the presence of the
L-up-sampler, the WSS characteristic of e[m] is not guar-
anteed even if the reference input signal y[m] and the
quantization error q[m] have WSS characteristics. The ex-
pectation value of the problem cannot be determined inde-
pendently of m. As seen in the next section, e[m] is
guaranteed to be an L-cycle wise sensor stationary (CWSS)
process somewhat weaker than WSS. The expectation value
E[L−1Σi=0

L−1e[nL − i]2] of the average of L samples of the
squared error is determined independently of n. Hence, the
SNR of the output signal of the interpolation filter is defined
by

2.5. Note about evaluation of the output SNR

The SNR defined in this section considers only the
quantization error at the input of the interpolation filter. It
does not include noise due to the interpolation filter opera-
tion with a finite word length and requantization at the
output. It is of course desirable to carry out more precise
analysis taking account of the effect of the quantization on
the output side. Nevertheless, the model in this section is
considered to be accurate in practice if the bit lengths of the
output and the interpolation filter operation below the deci-
mal point are sufficiently longer than the bit length b of the
fractional part of the input of the interpolation filter.

3. Derivation of Theoretical Equation for
SNR in the Frequency Domain

In this section, the SNR defined in the time domain
in the previous section is transformed to the theoretical
equation for the SNR in the frequency domain described by
the interpolation ratio L, the band-limiting coefficient α,
and the number of bits b of the fractional part, and the
frequency characteristics of the interpolation filter.

The evaluation system of the output error of the
interpolator in Fig. 4 in the previous section is not time-in-
variant due to the presence of the L-up-sampler. This makes
the analysis of the output error somewhat more compli-
cated. Hence, as shown in Refs. 5 and 8, an analysis is
performed by using the vector-valued signal combining the
adjacent L points of the signal.

For the reference input signal y[m], the L-dimen-
sional vector signal is defined as

(see Fig. 5). The z transform of the signal y[m] and its
polyphase decomposition

(7)

(9)

Fig. 5. Vector-valued signal y[n].

(10)

(11)

(12)

(8)
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are related to the z transform of y[n]

via the following relationship:

Here, by letting

Eq. (14) can be rewritten as

In this section, it is assumed that x[n], X(z), Xi(z
L), and

X(zL) are defined in the same way as in Eqs. (10), (11),
(12), and (13) for an arbitrary scalar signal x[m]. Also,
for conciseness of the expression, let us define

for s, t ∈ R.
First, let us consider an equivalent rewriting of the

input/output relationship in Fig. 3 without considering the
quantization by means of the L-dimensional vector signal.
For the L-dimensional vector u[n] of the output of the
L-up-sampler, it is possible to write

Here, O1,L−1, OL−1,1, and OL−1 are 0 blocks of 1 × (L – 1), (L
– 1) × 1, and (L – 1) × (L – 1). Also, if the transfer function
H(z) of the interpolation filter is represented in polyphase
as

then the following is obtained:

Since l = i – λ + LLT(i,  λ) under the conditions i – l ≡ λ
(mod L), 0 ≤ i < L, and 0 ≤ l < L, we have

If the matrix

is defined by

then H(zL) takes the form

Therefore, Eq. (20) can be written as Y
~

(z) = F(z)H(zL)U(zL).
Comparing this with Y

~
(z) = F(z)Y

~
(z), we obtain

Combined with Eq. (17), we obtain

where

From the above, the input and output relationships in Fig.
3 can be replaced by those in Fig. 6.

Next, let us consider the L-dimensional expression
under the additive quantization noise. For the L-dimen-
sional expression of q[m] and q~[m], the relationship Q

~
(zL)

= G(zL)Q(zL) holds and Fig. 4 is replaced by Fig. 7. Here,
let the reference input signal and the quantization noise be
combined and written as the 2L-dimensional [y[n] q[n]]T.
Then, by using P(zL) = [Y(zL) Q(zL)]T, E(zL) can be written
as

On the other hand, the output y~[m] of the interpolator
for the signal y[m] cannot be guaranteed to be WSS due to
the effect of the up-sampler, but is an L-Cyclo Wide Sense

(14)

(15)

(16)

(17)

(18)

(19)

(21)

(20)

(22)

(23)

(24)

(25)

(13)
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Stationary (CWSS)L process. Therefore, y~[n] obtained by
combining L successive samples of y~[m] as one vector is an
L-dimensional WSS process and the autocorrelation expec-
tation value matrix Ry~y~[k] := E [y~[n]y~†[n − k]]  is deter-
mined independently of n. In this case, the power spectrum
density is defined as

The output q~[m] of the filter for the quantization noise is
also a (CWSS)L process and Rq~q~ [k] and Sq~q~ (e

jωL) can be
similarly defined.

In Section 2.3, it is assumed that y[m] and q[m] are
jointly WSS processes. The definition is that the two-di-
mensional signal [y[m] q[m]]T is a WSS process. Hence,
y[n] and q[n] are jointly WSS processes and thus the
2L-dimensional vector

is a WSS process. Also, from the assumption of inde-
pendence of w[m] and q[m] in Section 2.3, y[n] and q[n]
become uncorrelated and hence

Then, from the above jointly WSS characteristic and
Eq. (25), it is found that e[n] is also a WSS process. So, 

and 

are determined independently of n. In particular,

can be defined independently of n. From the last expression
(29), it is found that E indicates an average energy of the
output error per sample point under the quantization noise
q[m].

In order to analyze this E in the frequency domain,
the following lemma is presented.
[Lemma 3.1]

(Proof) From Eqs. (27) and (28) and the relationship be-
tween e[n] and e[m], we have

Fig. 6. An equivalent presentation of Fig. 3 using L-dimension signal.

Fig. 7. An equivalent presentation of Fig. 4 using L-dimension signal.

(26)

(27)

(28)

(29)
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Because of the fact e[n] is a WSS process, this relationship
holds regardless of n ∈ Z. Letting n = 1 on the right-hand
side, we have

Let us consider each term of the sum with respect to µ of
this equation. For an arbitrarily fixed integer µ (0 ≤ µ < L),
let

Then, when k moves only once over all integers Z and n
moves over the integers 0 ≤ n < L once independently,

moves once on every member of all integers Z, and t
satisfies 0 ≤ t < L. Hence, Eq. (31) can be rewritten as

Extracting the term for l  = 0 by the inverse Fourier trans-
form, we obtain

This coincides with Eq. (29) with n = 1. Hence, the lemma
is proved.                                      "

Next, let us consider the relationship between the
power spectral density matrix See(e

jLω) and the power spec-
tral densities of the input and the quantization noise. Cor-
responding to Eq. (25), it is found from the general theory
that the relationship

exists between See(e
jLω) and Spp(ejLω). Further, from Eq.

(26),

The first term corresponds to the filtering noise ef[m] in Eq.
(1). The second term corresponds to the response q~[m]
corresponding to the quantization noise. By using this
equation, the integrand of the right-hand side of the equality
in Lemma 3.1 can be expanded as follows:

Below, each term is calculated.
Equation (35): With a derivation similar to Eq. (32), it is
found that

Since y[m] is a WSS process, each term in the sum over µ
is independent of µ and is equal to Syy(e

jω). Hence,

Equation (36): After some calculations using Eqs. (21) and
(24),

is obtained. Thus, the product of the (0, 0) component of
Syy(e

jω) with |H(ejω)|2 is calculated. We obtain

(31)

(30)

(32)

(33)

(34)

(35)

(37)

(36)

(38)

(39)

(40)

(41)

(42)
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(Note that the interior of the last parentheses becomes L for
k ∈ LZ and 0 otherwise. Hence,

Equations (37) and (38): From (42), Eq. (38) becomes

Note that Eq. (37) is its complex conjugate

Equation (39): Similarly to Eq. (36),

The results of Eqs. (41), (44), (46), (45), and (47) are
substituted and integrated,

where

Further, if Eq. (4) is used, we obtain

and

In the calculation of Es, the 2π periodicity of |H(ejω)| and
the exclusiveness of the support of Syy(e

j(ω − 2πjr / L) (1 ≤ r ≤
L – 1) are used. These Ep and Es denote the filtering noises
in the passband and the stopband. Similarly, Eq is found
from Eq. (7):

The energy of the reference input signal y[m] per sample is

Combining the above, the representation of the SNR in the
frequency domain can be written as

By normalization

to S, Ep, Es, and Eq simpler expressions can be obtained.
The theoretical SNR equation after normalization is

Here,

(54)

(55)

(56)

(44)

(45)

(46)

(48)

(47)

(43)

(50)

(51)

(49)

(53)

(52)
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Further, if it is assumed that the white noise w[m] as the
basis for the reference input signal y[m] takes values in the
range of (–1, 1), then by Eq. (8) Eq can be written specifi-
cally with bit length b of the fractional part as

It is assumed that this assumption is valid up to the end of
this section.

Let us consider an ideal filter maximizing the theo-
retical SNR equation derived above and the resultant upper
limit of the SNR. When the band-limiting coefficient α and
the interpolation ratio L are given, the maximization of the
SNR is reduced to the minimization of the denominator of
Eq. (52):

The integration range of Eq. (57) is divided into [0, απ/L)
and [απ/L, π). Considering it together with the integration
range in Eq. (55), it is immediately found that the best
choice of H(ejω) in the range [απ, 2π – απ/L) is to be
identically zero. Then, E is

By some calculations, it is found that the best choice is
obtained if H(ejω) is to be identically 22b+2L / (22b+2 + L) in
this integration range. In total, the frequency characteristic
of the ideal filter in the range of [0, π) is

Hence, the ideal filter passes the range within the input band
limitation at a gain of 22b+2L / (22b+2 + L) and completely
suppresses the image and the quantization noise outside this
bandwidth. Due to the band limiting coefficient α, this
characteristic is different from that of the ideal L-th band
filter in the sense of equal division of the band. This ideal
filter Hideal provides the upper limit of the SNR:

4. Verification of the Theoretical SNR
Equation by Simulation

To verify validity of the theoretical SNR equation in
the frequency domain derived in the previous section, it is
compared with the numerical simulation of the SNR defi-
nition in the time domain defined by Eq. (9) in Section 2.

The simulation method is as follows. In the following
real value operations, the floating point representation is
used.

(i) Simulation of the reference input signal

By using a pseudorandom number generator
MT19937 [2], a pseudo white noise sequence w′[m] (0 ≤ m
< M) that takes values in the range of (–1, 1) is generated.
The sequence length is chosen as M = 214 = 16,384 so that
it is sufficiently large. By means of the M-point DFT, w′[m]
is band-limited to [0, απ/L) and is used as the pseudo
reference input y′[m].

(ii) Quantization

By discarding 0s and including 1s, y′[m] is rounded
so that its fractional part has b bits.

(iii) Down-sampling and interpolation process

For the output of (ii), the down-sampling and the
up-sampling are applied according to the definition. Then
filtering is carried out with H(z) realized by floating point
numbers, to generate the interpolation output ŷ′[m] (0 ≤ m
< M).

(iv) Calculation of square sums of signal and error

According to

the square sum of the signals and the square sum of the
errors are calculated for this sequence.

(v) Calculation of SNR

In regard to different 10,000 w′[m] sequences, the
sums of S′ and E′ in (iv) are taken. Let the results be S′′ and

(57)

(58)

(59)

(60)

(61)

Fig. 8. SNR: theory versus simulation.
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E′′, respectively. Then let the ratio S′′ / E′′ be the SNR
simulation value SNRsim.

For an interpolation ratio L = 2, a band limiting
coefficient α = 0.9, and a number of quantization bits b =
7, Fig. 8 shows the variations of the theoretical SNR values
and the simulated SNR values versus the order of the H(z)
of the interpolation filter. In the figure, Theory indicates the
decibel representation of the theoretical value of the SNR,
10 log10 SNR. Simulation indicates the decibel expression
of the simulation results, 10 log10 SNRsim. Both are in good
agreement. Here an equal-ripple FIR half-band filter is used
as H(z). The theoretical SNR values are calculated by the
theoretical SNR equation (52) from the amplitude charac-
teristics.

5. Design of Interpolation SNR
Maximizing FIR Filter

In this section, based on the theoretical SNR equation
presented in Section 3, a design method for a linear phase
FIR filter (Type I) is proposed for which the interpolation
output SNR is the maximum. First, in Section 5.1, a design
method is described for maximizing the SNR without the
restriction of the L-th band filter, and then, in Section 5.2,
the SNR maximizing design under the constraint of the L-th
band filter. It is natural that the former filter is superior to
the latter in SNR for the same filter order. On the other hand,
the latter has the advantage that the number of multipliers
is smaller (about one-half when L = 2).

5.1. Least square design of maximum SNR
interpolation filter

In Section 3, Eq. (52) is derived, by which the SNR
is obtained from the interpolation ratio L, the quantization
bit number b of the input signal, the band limitation coeffi-
cient α, and the amplitude characteristics of the filter. As
described toward the end of Section 3, the SNR maximiza-
tion problem is reduced to that of minimization of Eq. (58):

when L and α are given. Here, Ep is the passband filtering
noise, Es is the stopband filtering noise, and Eq is the energy
for the response of the interpolation filter for a quantization
noise. They are given by Eqs. (54), (55), and (56). All of
Ep, Es, and Eq are in the form of squared amplitude errors.
The error function E is their sum.

In this paper, E is used as the objective function and
a design method is proposed for derivation of the filter
minimizing E or maximizing the SNR by the method of
least squares. It is assumed that the interpolation filter H(z)
is a linear phase Type I FIR filter. In order to express its

frequency characteristics, let us define the vector c and the
coefficient vector a as follows:

Here,

Using a and c, the frequency characteristic H0(e
jω) of the

zero-phased version H0(z) of the interpolation filter H(z) is
given by

When these are substituted into H(ejω) and |H(ejω)|2 of
Ep, Es, and Eq in Eqs. (54), (55), and (56),

The reason for using the zero phase H0(z) in place of H(z)
is for correction of the N group delay in the output of the
actual interpolation filter H(z) in comparison to the refer-
ence input signal y[m] in the error evaluation system in Fig.
4.

From Eqs. (67), (68), and (69), it is found that Eq.
(58) for the error function can be written in the form

(63)

(66)

(69)

(62)

(64)

(65)

(67)

(68)

(70)
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Here F and g are as follows:

The k-th column l-th row (k, l = 0, 1, . . . , N) component
Fk,l of the matrix F and the k-th column (k = 0, 1, . . . , N)
component gk of the vector g can be calculated analytically
as shown in Table 1. Note that under the assumption that
the white noise w[m] as the source of forming the reference
input signal y[m] takes a real value of (–1, 1) the following
specific form can be found from Eq. (8):

The matrix F is a symmetric positive-definite matrix.
Therefore, when the error function E is the minimum, the
following relationship exists for F, g, and a [11]:

By solving linear equation (74), the filter coefficient vector
a minimizing the error function E can be derived.

In summary, the design specifications in the proposed
method are

• the interpolation ratio L
• the input signal band limiting coefficient α

• the quantization bit number below the decimal
point of the input signal b

• the filter order 2N

and plugging them into Eqs. (71) and (72) and then solving
the linear Eq. (74), the filter coefficients maximizing the
SNR can be obtained.

5.2. SNR maximizing design under the L-th
band restriction

Since about half the coefficients are 0 in an FIR
half-band filter, this filter can be realized with about half as
many multipliers as the general FIR filter. Here, a modified
design method is presented in which the restriction of the
L-th band filter is added to the design method in the pre-
vious section. The impulse response of the L-th band filter
h[m] is restricted as follows:

With regard to the center value h[N] of the impulse re-
sponse, no restriction is imposed for SNR optimization.

From restriction (75), the rL-row component a(rL) of
the coefficient vector a given in Eq. (62) is restricted as

On the other hand, for the rL-row component of g in Eq.
(72),

holds automatically. Hence, for the vector a in Eq. (62), let
a′ be the vector obtained by eliminating the rL-column:

Table 1. Elements of F and g

(71)

(72)

(73)

(74)

(75)

(76)

(77)
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For g, let us similarly define g′. Also, let the matrix F′ be
the matrix obtained by eliminating the rL-th column and
the rL-th row from F in Eq. (71). By solving the linear
equation

the coefficient vector a′ of the L-th band filter maximizing
the SNR can be derived.

6. SNR Performance Comparison and
Design Examples

In this section, the SNR characteristics are compared
between the SNR maximized interpolation filter proposed
in the previous section and the interpolation filter by the
conventional method. Several examples of design by the
proposed method are also presented.

6.1. SNR performance comparison

Under the conditions of an interpolation ratio L = 2,
a band limiting coefficient α = 0.9, and a number of
quantization bits b = 7, the SNR maximized interpolation
filter designed by the method in Section 5.1, the SNR
maximized half-band interpolation filter designed by the
method in Section 5.2, and that designed by the conven-
tional method are compared for each filter order. The filter
designed by the conventional method is designed by seek-
ing the passband edge frequency of the equal ripple filter
that maximizes the SNR for each order. (The design needs
to be repeated by changing the passband edge frequency.
This is one of the shortcomings of the conventional design
specifying the passband and stopband.) The SNR perform-
ance comparison is shown in Fig. 9. The SNR is computed
from the theoretical SNR equation derived in Section 3 by
using the amplitude characteristics of the interpolation fil-
ter. By applying 10 log10 operation, the decibel expression
is obtained. The horizontal axis indicates the filter order.
Proposed, Proposed (halfband), and Conventional indicate
the SNR maximized filter in Section 5.1, the SNR maxi-
mized half-band filter in Section 5.2, and the conventional
filter. Also, SNRmax is the upper limit of the SNR given by
Eq. (61). It is first clear that SNR is not necessarily im-
proved in the case of Conventional as the order is increased.
When the order becomes about 80th or higher, the SNR is
stationary or even decreases slightly. On the other hand, the
SNR of Proposed is found to approach SNRmax as the order
is increased. It is noted that the SNR of Proposed at the
order of 80 is better than that of Conventional at 160. Since
the increase in the order does not necessarily lead to im-

provement of the SNR in Conventional, even if compari-
sons between Proposed and Conventional are made with the
same number of multipliers, their difference increases with
an increasing number of multipliers. The SNR of Proposed
(halfband) is slightly better than that of Conventional up to
an order of about 100. The SNR is improved at higher
orders. However, the improvement is slower than Proposed
due to the half-band limitation.

The output noise for each order is divided into the
quantization noise Eq, the passband filtering noise Ep, and
the stopband filtering noise Es, which are then compared in
Figs. 10, 11, and 12. First, it should be noted that Eq is
overwhelmingly predominant over Ep and Es in terms of
magnitude at orders larger than 40.

In the case of Conventional, the ripples in the pass-
band and the stopband decrease as the order becomes
higher, so that the filtering noises Ep and Es are improved
up to an order of about 100. On the other hand, the quanti-

(78)

Fig. 9. SNR comparison.

Fig. 10. Order versus quantization noise Eq.
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zation noise Eq tends to increase with the filter order. The
amplitude characteristics of the filter designed by the con-
ventional method in the transition region become sharper
as the order becomes higher. This is not a suitable charac-
teristic to reduce the quantization noise in [απ/2, π/2).

In Proposed, the improvement of Eq, Ep, and Es is
similar to that in Conventional for low orders (up to about
60). At higher orders, the quantization noise Eq is decreased
more than the filtering errors Ep and Es. The passband
filtering error Ep of Proposed is worse than that in the
conventional method at orders of more than 60. However,
the quantization error Eq, which has a larger absolute value,
is more significantly reduced.

In Proposed (halfband), with a long-period undula-
tion as the order is increased, a characteristic that can be
considered to be intermediate between that of Proposed and
Conventional, is observed.

6.2. Design example with an interpolation
ratio of L = 2

The characteristics of the amplitude response of the
interpolation filter designed by the proposed method are
presented through a design example. The conditions of an
interpolation ratio L = 2, a band limiting coefficient α = 0.9,
and a number of quantization bits b = 7 are identical to those
in Section 6.1.

Figure 13 shows a comparison of the amplitude char-
acteristics of the SNR maximizing filter (Proposed) in
Section 5.1, the SNR maximizing half-band filter [Pro-
posed (halfband)] in Section 5.2, and the conventional
method (Conventional) when the filter order is 160. The
horizontal axis is the normalized frequency ω/2π. The two
edges of the bandwidth [α/4, 1/2 – α/4) in which only the
quantization noise exists are indicated by notches on both
sides of 1/4. This bandwidth is the transition region for
Conventional without control of the amplitude. However, it
is found in Proposed that the gain approaches zero while
ripples exist. In Proposed (halfband), the gain in this band-
width is kept small under the half-band restriction. The
amplitude characteristics of Proposed and Proposed (half-
band) for filter orders of 40, 80, and 160 are presented in
Figs. 14 and 15. From Fig. 14, it is seen that the amplitude
of Proposed becomes sharper near ω = απ/2 as the order is
increased and exhibits a behavior approaching the ideal
amplitude characteristic (60) in Section 3 (in some sense).
Also, in Fig. 15, the amplitude characteristic becomes
sharper with increasing order near ω = απ/2. However, due

Fig. 11. Order versus passband-filtering noise Ep.

Fig. 12. Order versus stopband-filtering noise Es.
Fig. 13. Comparison of amplitude responses at order

160.
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to the restriction of the half band, the amplitude undulates
around 1 in the frequency region in which only quantization
noise exists.

6.3. Design example with interpolation ratio L
= 5

The proposed method can be applied at an arbitrary
value of L. However, in this section, only one example is
presented, under conditions of an interpolation ratio L = 5,
a band limiting coefficient α = 0.8, and a number of
quantization bits b = 7. Figure 16 shows the amplitude

characteristics of the SNR maximized filter (Proposed) and
the SNR maximized 5th-band filter [Proposed (5th-band)]
with an order of 298. The frequency regions in which only
quantization noise exists are [0.08, 0.12), [0.28, 0.32), and
[0.48, 0.5) in terms of the normalized frequency ω/2π. In
Proposed, the amplitude is close to 0, but there are some
ripples in these bands. In Proposed (5th-band), the ampli-
tude undulates around 1 in these bands.

7. Conclusions

The output SNR of an L-interpolation filter for a
quantized band-limited signal is analyzed. A theoretical
equation for the SNR described in the frequency charac-
teristic of the interpolation filter is derived. Its validity is
confirmed by simulations. Further, a design method is
proposed for an interpolation filter maximizing the SNR.
The design methods are for SNR maximization within the
Type I FIR filter and for SNR maximization with restriction
of the L-th band filter. Each problem is reduced to solving
a system of linear equations with the coefficient matrix
expressed analytically. Hence, design for an arbitrary inter-
polation ratio L is easily carried out. In the proposed filter,
an SNR not attainable by the conventional filter considering
only the passband and the stopband, even with sacrifice of
the order, is now attained by reducing the gain in the regions
where only quantization noise exists.
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