A 2-D extension of the sampling algorithm for sparse fourier representations
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Abstract—Recently, a very efficient sampling algorithm for
finding a B-term fourier representation of given 1-D discrete sig-
nal is presented [Gilbert, Guha, Indyk, Muthukrishnan, Strauss;
STOCO02]. In this paper, we present a modified version of the al-
gorithm, which can be applied to 2-D signals. As in the original
algorithm, dependence of the running time on the signal length is
polylogarithmic.

I. INTRODUCTION

Let

x = (z[0], z[1], .. L[N —1]) @)

be a complex-valued discrete time signal of lenythThe dis-
crete fourier transform (DFT), or the spectrumxof

,x[n], ...

x = (z[0], z[1],...,Z[k],..., Z[N —1]) 2)
where
1 N—-1 .
zlk] = i 2220 wn)e 72 RIN, 3
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In those applications that the optimBtterm representation
permit a good approximation to the original signal wigth< <
N, the B-term representation, or equivalently, the li&$B)
of frequencies andl[k], ..., Z[kg] of coefficients, would be
a nice “digest” of the original signal, in the views of concise-
ness and accuracy. The computation is obviously feasible, by a
combination of the fast fourier transform (FFT) algorithm and
some sorting algorithm. The running time has a lower bound
Q(Nlog N) (here we regard the required precision as a con-
stant), which sounds not so big. However, when we want to
make B-term digest for each at’s, in a huge database, each
having a really long lengtiV, the costN log N by the num-
ber of x’s will be so expensive. The formula (3) shows that
every fourier coefficient[k] depends on entire signal and
it would be natural that one think it were impossible to reduce
the computational complexity even with the sparseness condi-
tion B << N (sayB = 10 independent ofV.)

Gilbert, Guha, Indyk, Muthukrishnan, and Strauss [1] have
shown a somewhat surprising result thaear-optimal B-term

is a fundamental tool for analyzing or representing features @épresentaﬁon of any signal can be obtaiwitt high probabil-

the signakk. The inverse DFT (IDFT):

/x\[k]ejZ‘:rnk/N’

(4)

recovers the signak completely from the spectrurk, and
these transforms preserve tffenorm:

[Ixlly = 11l

)]
where

(6)

[Ix[[5 ==
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ity, within a time whose dependence dhis poly-logarithmic.
Let . be a small number such that, ik — y||3 < ¢ then we
consider that two signals andy are identical. By a normal-
ization, we assume that= 1 and M is a crude upper bound
on||z||, after the normalization.

Theorem 1 ([1]). There exists an algorithm, on inpft < N,
e > 0, andx, with cost(Blog(N)log(M)/e)°™M), with high
probability, output aB-term representatiom for x which sat-
isfies||x — ||, < (1+¢€)|[x — Topi(m) |, Whereryy () is the
optimal B-term representation fok. The algorithm accesses
only (Blog(N)log(M)/e)°™) samples{z[n] : n € T} of x,

let B < N be a positive integer and suppose thaWhere the random Sample SEtis chosen independently &f

the frequency listK(B) =
Z[k1], ..., x[kp] are theB-maxima among the spectrugj in
their absolute values. Then the signgl; s, defined by

Z ff[k]ej%mk/N

k€K (B)

1

Wii @)

Topt(B) [’I’L] =

is the best possiblé? approximation of the signat by a B-
term sum of pure tonegy[n] := e/2™*/N /\/N. We shall

referr,,q(z) as the optimaB-term (fourier) representation of

X.

(ki,...,kp) is taken so that (The success probability may be a constant arbitrarily close to

1 and the cost for it is implied in©O(1)".)

Thus, whenB is sufficiently smaller thadV, the algorithm,
which we shall refer as the GGIMS algorithm in the sequel,
enables very efficient computation Bfterm representations.

Now, suppose thatx is a signal defined over the 2-
dimensional domaigo0, ..., Ny — 1} x {0,..., Ny — 1}:

x = (z[n1,n2] : 0 <ny < N1,0 < ng < No)

(8)



and let The procedure only sets up parameters which enable later pro-
cedures to sample arbitrary signal pointsféf To show the

x=(z 0 < N.,0< N . .
X = (@l ko] : 0 <k < N3, O < hy < Vo) ©) construction we define the operat®y , for 0,0 € Z/NZ

be its 2-D DFT, where through
- (Roo f)[n] = &7/ flon]. (12)
k1, ko] == Y a[ny, vk, gy [—n1, —nal, (10)
ni,mz Then it holds that
and — N
2 (M + 2 (Roof)lok + 0] = f[k]. (13)
Viey ep [N1, N2) 1= ———————. (12)
pha T N1Ny Also we define the Féj kernel of lengti2m + 1 as
The optimalB-term representation fot, i.e. the listskK (B) =
((k11,k21),.-.,(k1,B,ke,8)) Of frequencies and the corre- Holn] = Qﬂl n € [—m,m] (14)
sponding coefficient8[ky 1, k2.1], . . ., Z[k1, B, k2, 5] Where the e 0 otherwise
latter areB-maxima ofz in absolute value, will be useful in this
case also. The goal of this paper is to extend the GGIMS alglj-nolds that
rithm to an algorithm that efficiently compute near-optinial sin(w(2m+1)/N) (k #0)
. . . . . ﬁ kl = (2m~+1) sin(wk/N) (15)
term representations for signals defined overdir@ensional mk]
domain L (k=0)

The rest of paper is organized as follows: Section Il. is a brigfnd in particularﬁm[k] > 2/7 for k € [-N/(2(2m +
deSCfiption of the GGIMS algorithm [1] for 1-dimensional Sig'l))7 N/(2(2m + 1))] We regard the last interval as “pass re-
nals, where we shall discuss what parts of the algorithm atgon” of H,,,
dimension-dependent. In Section lll., we modify parts of the Now, the signal;. . .. £,,, are defined as follows: first, pick

GGIMS algorithm so that it can be applied for 2-dimensionaé ando at random irZ/NZ, with o invertible. Then put, for
signals. Section IV. concludes the paper. each) < i < 2m

In the sequel, the time or frequency doméin1,..., N -1} -
is identified withZ /NZ, the ring of integers modul&. For f; = (727 CmIVH, ) x (Ry o), (16)
simplicity, we assume tha¥, N1, N, are odd prime numbers.

, , wherex denotes the convolution. In the frequency domain, the
E[X] means the expectation of a random variakle

spectrumz is first permuted byt — ok + 0, then filtered by
II. THE GGIMS ALGORITHM “iN/(2m + 1)-shifted version of'H,,, to formT;.

Using the fact thak k + 0 is a pair-wise independent
The GGIMS algorithm composed of 3 parts; ldentification, ng ok O paIrwise indep

. . . . . . ermutation (i.e., for alk ko andk ka, k ks and
Estimation and Iteration. Given the input signglthe algo- Z f with( robabilit f/zjv(jv 1))3) 7iétc;n ble;o;vn that
— —
rithm start with the current lis6 set to null, and the corre- 2 4 P y '

. . the following holds with high probability: for eadt such that
sponding at-mosB-term representationis set to0. o 9 o )

|Z[K']]? > n||x||5, there existg(0 < ¢ < 2m + 1) such that

A. ldentification ﬁ[k’] > 0.98||fi||§. We note that sampling one point frofn

can be done by sampli 1 points fromx, by construction.
Letn := ¢/(2B). The purpose of this part is to output a list y plingn-+1p y

A of frequencies, whose length2sn + 1 = O(1/7), which _ Sy 5
contains (with high probability) all frequencids satisfying deterrr/une's the frequendy satisfying f[x'] > 0.98[|f]l;, if
k]2 > 77\|X||3- In this part there exist two procedures; ISOIa_suchlc exists. Then gather such from f;'s to form the fre-

tion and Group Testing. The latter procedure call a subroutirf#€NcY listA. By the construction of;’s, A catches all such

. 2 2
that (roughly) estimate the norm of given signal by Samp"ng.frequenmes that['] | = n][x|l;.

2) Group TestingfFor eachf € {fy,...f,}, the procedure

1) Isolation: This procedureconstructs2m + 1 signals The procedure utilizex6 filters

fy, ... 5, that satisfy (with high probabilit N 1 2k 2
o f (with high p ) Gtk = 50+ o2 -2y (=0, 1), (17)
1. For eachk’ such thatz[+']|? > 77||x|\§, there existg(0 < .
i < 2m + 1) such thatf,;[k’] > 0-98Hf7:|\§- each is of lengtt3. If we define the pass region &, by
2. Eachf; can be sampled by sampling non-adaptively from pass, := {k: |2nk/N — 2n¢/16| < 27w /32},  (18)

x in O(m) places. . ) .
thenG,[k] > 0.99 for k € pass, and these pass regions tile the

Here we note that the wordtnstructs does not mean actual entire frequency domain. The procedure also uses a subroutine,
output of the entire signal points;[0], fi[1],..., fi[N — 1]).  which will be explained in the next subsection, satisfying the



c—2M/B If 95% of f is concentrated in a pure frequency, then the energy
Do of spikes are small, sB[X] ~ E[Y] = ||f|\§, and since vari-
{ _ _ ance ofX is small,X is a good estimation. The algorithm sets
?Cflrazréfomj\;?(cj;p;;:jg samplese Z/NZ a ceilingc, above which all values of the function are clipped
ne oo as if they were spikes. The algorithm gradually lowers the clip-

c—c/(1+0)
} while X < 32¢2 ande > 1 ping celingc until the energy estimate is consistent with the
OutputX/(1 + 8) ceiling value.
Fig. 1. Estimating Norm B. Estimation

This part estimates[k], for eachk € A, by a sampling algo-

following: The subroutine make®(loglog M) samples, runs fithm

in time polynomial inlog(Af), on inputf (of length V) with
biggest fourier coefficienf[k:}, it returns, with high probability,
a random outpuk such that:

The sampling algorithm used here takes inp(isk, i),
wherea is a signal of lengthV, & a frequencyu an accuracy
parameter. Then the algorithm runs with c6¥tlog(M)/u),

1. X< ||f||§,Vf. maklng O(1/p) samplings froma, and returns the estima-
tion a[k:], which satisfies with h|gh probability thaﬁ[ ] -
alk]|* < e||a|\2. The estlmatlom[k] is computed as follows:

Now assume that we are seeking unknorwhich have let¢ = O(1/u) and pickt random positionsuy, ..., ns. Put
at least 98% energy df. Without loss of generality, we as- @’ = N/t>,_; Ay, , whereA,, is the delta function. Then
sume thatk’ € pass,. For each? = 0,1,...,15, We esti- computeX = «’[k] and return it as the estimate. It can be
mate the normi|f + G,|| using the subroutine. Far= 0, it Shown tha€[X] = a[k] andE[|X — @[k]|?] < O(ellal[3).
can be shown thdf*/éoP > 0.95]|f * G0||§ by combining  For the estimation ofZ[k], an accuracy ofuy =
the factsk’ € passy, Go[k'] > 0.99 andf[k’] > 0.98||f\|§. 1/poly(Blog(N)log(M/d)/e) (Whered = |[[x — ropum)ll,)
Then the second property of the subroutine, the returned valigerequired.
X satisfiesX > 0.5||f % GOH; It also can be shown that
0.5(f * Gol[> > 0.48||]|. On the other hand, fof =
it can be shown that the returned valXe of the subroutine  Now we have the estimated fourier coeff|c|em(§] for k €
satisfiesX < Hf*G4H2 < 0.38|f||5, from the facts that A. Let Z[k'] be the maximum (in abosolute value) among
k' is far from pass, and that the contributions tof G4|\§ them. Addk’ to the current coefficients lis§, and update
from frequencies other thak' is small (at mosD.02\|f||§). the current representatianby r «— r + :[ k'Y . Then set

2. IF | f[K]]2 > 0.95]|£]|3 thenX > 0.5||F||3.

C. lteration

For¢ = 5,6,...,12, we obtainX < O.38||f\|§ in the same x «— x — x[ lyx and A.. However, we should note that the
way. So, we can eliminate the possibilities thate pass, for  update ofx just before goto is in fact impossible, since we can
¢ =4,...,12. In this manner, we can always eliminatgl6 access only via sampling. Actually, after 2nd iteration, we

possibilities. The remaining region forms a cyclic interval okample fromx — r whenever we need sample framusing the

lentgth at mostN/16. By applying the operataR, », we can maintained representatian

dilate the remaining frequency region by two. Then applying The algorithm may or may not halt just after that the repre-

16 filters, we can halve the possibilities again. Repeating thakntationr has grown toB-terms. Here we do not mention

O(log(N)) times, we learr'. the accurate halting condition, however, it is guaranteed to halt
3) Estimating NormThe subroutine for estimating norm is within poly (B log(N) log(M/d)/¢) iterations.

shown in Fig. 1, wher@ > 0 is a small constant (independent

of N and M), and the number of samples isD(log log M),

and in fact we can reuse the same samples in the ldog.

[1l. M ODIFICATIONS FOR2-D SIGNALS

The strategy of GGIMS algorithm is not dimension-

stands meansf“clipped at the ceiling”, i.e, dependent, However, two key steps in the Identification part
finl (fn]] < ¢/VN) needs a modification for 2-D signals. Here we describe mod-
(Kef)[n] == _ (19) fifications for Isolation step and Group Testing step. In the
0 otherwise sequel, signals are defined over the 2-dimensional domain
Intuition behind the algorithm is as follows: Let = Z/N1Z x Z/N>Z

LS N|f[ni]|>. ThenE[Y] = ||f]|3 and it would be a good

estimate if the variance af were small. The variance comes
from spikes, so we use the clipped versi¥iinstead. Itis satis- 1) Isolation (2-D): Let n := ¢/(2B).We will con-
fied that0 < E[X] < E[Y] = \|f\|§ and X has small variance. struct (2m; + 1) x (2mg + 1) signals f;, ,[n1,n2|(i1 =

A. ldentification (2-D)
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Fig. 2.H10710[’€1, k:g](Nl = Ny = 40)

0,1,...,2mq,io =0,1,..
1)=0(1/n).
We define the operatdiy, o, 9,.0, through

., 2ms), where(2m; +1) x (2ma+

R, 01,05,05% 01, mg] = 72701/ Nit0zma /N2)
1,01,V2,02

1‘[0’1’[11,0’2’&2} (20)
and 2-D Fegr kernel by
Hml,m2 [nlvnQ] =
VNN
(2m1+1)(2me+1) (nl’ n2) €
[—mhml] X [—77712,777/2] (21)
0 (otherwise)
See Fig.2 for the spectrum.
Then the SignalS]('il’i2 [nl, n2](i1 = 0,1,...,2mq,i9 =
0,1,...,2my) are constructed as follows: pick;,0; €

Z/N1Z at random, withoy invertible.
09,09 € Z/N>Z at random, witho, invertible. Then set

fil,ig [nh Tlﬂ =

(ej27r(i1n1/(2m1+1)+i2n2/(2m2+1))Hm1’mz [nh n2])

* R91,01792,02x[n1a nQ]' (22)

Independently, pick

ky

Fig. 3. The filterGo o[k1, k2] (N1 = Na = 16)

In the time domainG,, ,, has a support df x 3 square.

With these filters, we can eliminate— (7/16)? = 207/256
(instead ofl — 7/16 in 1-D case) of possibilities in one step of
Group Testing.

B. Complexity of 2-D algorithm

By the above modifications of the algorithm, we obtain a nat-
ural 2-D extension of Theorem 1:

Theorem 2. There exists an algorithm, on inpuB <
NiNs, ¢ > 0, and a signalx over the 2-dimensional
domain {0,...,N; — 1} x {0,...,Ny — 1}, with cost
(Blog(N1)log(N2)log(M)/e)°™M), with high probability,
output a B-term representationr for x which satisfies
[[x —rll, < (1+ €)llx —ropi(m)lly Wherery, s is the op-
timal B-term representation fox. The algorithm accesses
only (Blog(N;) log(No) log(M)/e)°M) samples{z[ny,na] :
(n1,n9) € T} of x, where the random sample sEtis chosen
independently ak. (The success probability may be a constant
arbitrarily close to 1 and the cost for it is implied in0(1)".)

IV. CONCLUSION

In this paper, we have presented an efficient algorithm that
finds a near-optimaB-term fourier representation of 2-D sig-
nals, by modifying a part of GGIMS algorithm [1].

It can be shown that they have the following (expected) prop-The running time of the algorithm depends on signal amount

erties:

1. For eachk}, kb, such thatz[k], k5]|? > onHg, there ex-
iStS(il,ig)(O <41 <2mq1 + 1,0 <19 < 2mg + 1) such

> 2
thatfil,iz [kiv kl2] < 098| ‘fil,iz ||2

2. EaChfil’i2
from x in O(mym2) places.

2) Group Testing (2-D)tn 2-D case, we rely on the following

256 filters (see Fig. 3):

A 1 2mk 2l
G, tylk1, ko] = i {1 + cos ( Nll 161)}

277]4?2 27T€2
~{1—|—cos<N2 BT )}

(0 <0 <16,0 < £y < 16)

(23)

only polylogarithmically, so the algorithm will be useful for
digesting vast 2-D signals.

The algorithm has many hidden constants that would affect
practical use. So more fine analysis of the algorithm is still
needed.

can be sampled by sampling non-adaptively
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