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Abstract—Recently, a very efficient sampling algorithm for

finding a B-term fourier representation of given 1-D discrete sig-

nal is presented [Gilbert, Guha, Indyk, Muthukrishnan, Strauss;

STOC02]. In this paper, we present a modified version of the al-

gorithm, which can be applied to 2-D signals. As in the original

algorithm, dependence of the running time on the signal length is

polylogarithmic.

I. I NTRODUCTION

Let

x = (x[0], x[1], . . . , x[n], . . . , x[N − 1]) (1)

be a complex-valued discrete time signal of lengthN . The dis-

crete fourier transform (DFT), or the spectrum, ofx,

x̂ = (x̂[0], x̂[1], . . . , x̂[k], . . . , x̂[N − 1]) (2)

where

x̂[k] :=
1√
N

N−1∑
n=0

x[n]e−j2πnk/N , (3)

is a fundamental tool for analyzing or representing features of

the signalx. The inverse DFT (IDFT):

x[n] =
1√
N

N−1∑

k=0

x̂[k]ej2πnk/N , (4)

recovers the signalx completely from the spectrum̂x, and

these transforms preserve the`2 norm:

||x||2 = ||x̂||2, (5)

where

||x||2 :=

√√√√
N−1∑
n=0

|x[n]|2. (6)

Let B < N be a positive integer and suppose that

the frequency listK(B) = (k1, . . . , kB) is taken so that

x̂[k1], . . . , x̂[kB ] are theB-maxima among the spectrum̂x, in

their absolute values. Then the signalropt(B) defined by

ropt(B)[n] =
1√
N

∑

k∈K(B)

x̂[k]ej2πnk/N (7)

is the best possiblè2 approximation of the signalx by a B-

term sum of pure tonesψk[n] := ej2πnk/N/
√

N . We shall

referropt(B) as the optimalB-term (fourier) representation of

x.

In those applications that the optimalB-term representation

permit a good approximation to the original signal withB <<

N , theB-term representation, or equivalently, the listsK(B)
of frequencies and̂x[k1], . . . , x̂[kB ] of coefficients, would be

a nice “digest” of the original signal, in the views of concise-

ness and accuracy. The computation is obviously feasible, by a

combination of the fast fourier transform (FFT) algorithm and

some sorting algorithm. The running time has a lower bound

Ω(N log N) (here we regard the required precision as a con-

stant), which sounds not so big. However, when we want to

makeB-term digest for each ofx’s, in a huge database, each

having a really long lengthN , the costN log N by the num-

ber of x’s will be so expensive. The formula (3) shows that

every fourier coefficient̂x[k] depends on entire signalx, and

it would be natural that one think it were impossible to reduce

the computational complexity even with the sparseness condi-

tion B << N (sayB = 10 independent ofN .)

Gilbert, Guha, Indyk, Muthukrishnan, and Strauss [1] have

shown a somewhat surprising result that anear-optimalB-term

representation of any signal can be obtainedwith high probabil-

ity, within a time whose dependence onN is poly-logarithmic.

Let ι be a small number such that, if||x− y||22 ≤ ι then we

consider that two signalsx andy are identical. By a normal-

ization, we assume thatι = 1 andM is a crude upper bound

on ||x||2 after the normalization.

Theorem 1 ([1]). There exists an algorithm, on inputB < N ,

ε > 0, andx, with cost(B log(N) log(M)/ε)O(1), with high

probability, output aB-term representationr for x which sat-

isfies||x− r||2 ≤ (1 + ε)||x− ropt(B)||2, whereropt(B) is the

optimalB-term representation forx. The algorithm accesses

only (B log(N) log(M)/ε)O(1) samples{x[n] : n ∈ T} of x,

where the random sample setT is chosen independently ofx.

(The success probability may be a constant arbitrarily close to

1 and the cost for it is implied in “O(1)”.)

Thus, whenB is sufficiently smaller thanN , the algorithm,

which we shall refer as the GGIMS algorithm in the sequel,

enables very efficient computation ofB-term representations.

Now, suppose thatx is a signal defined over the 2-

dimensional domain{0, . . . , N1 − 1} × {0, . . . , N2 − 1}:

x = (x[n1, n2] : 0 ≤ n1 < N1, 0 ≤ n2 < N2) (8)



and let

x̂ = (x̂[k1, k2] : 0 ≤ k1 < N1, 0 ≤ k2 < N2) (9)

be its 2-D DFT, where

x̂[k1, k2] :=
∑

n1,n2

x[n1, n2]ψk1,k2 [−n1,−n2], (10)

and

ψk1,k2 [n1, n2] :=
e
j2π
�

k1n1
N1

+
k2n2

N2

�
√

N1N2

. (11)

The optimalB-term representation forx, i.e. the listsK(B) =
((k1,1, k2,1), . . . , (k1,B , k2,B)) of frequencies and the corre-

sponding coefficientŝx[k1,1, k2,1], . . . , x̂[k1,B , k2,B ] where the

latter areB-maxima of̂x in absolute value, will be useful in this

case also. The goal of this paper is to extend the GGIMS algo-

rithm to an algorithm that efficiently compute near-optimalB-

term representations for signals defined over a 2-dimensional

domain.

The rest of paper is organized as follows: Section II. is a brief

description of the GGIMS algorithm [1] for 1-dimensional sig-

nals, where we shall discuss what parts of the algorithm are

dimension-dependent. In Section III., we modify parts of the

GGIMS algorithm so that it can be applied for 2-dimensional

signals. Section IV. concludes the paper.

In the sequel, the time or frequency domain{0, 1, . . . , N−1}
is identified withZ/NZ, the ring of integers moduloN . For

simplicity, we assume thatN,N1, N2 are odd prime numbers.

E[X] means the expectation of a random variableX.

II. T HE GGIMS ALGORITHM

The GGIMS algorithm composed of 3 parts; Identification,

Estimation and Iteration. Given the input signalx, the algo-

rithm start with the current listS set to null, and the corre-

sponding at-most-B-term representationr is set to0.

A. Identification

Let η := ε/(2B). The purpose of this part is to output a list

Λ of frequencies, whose length is2m + 1 = O(1/η), which

contains (with high probability) all frequenciesk satisfying

|x̂[k]|2 ≥ η||x||22. In this part there exist two procedures; Isola-

tion and Group Testing. The latter procedure call a subroutine

that (roughly) estimate the norm of given signal by sampling.

1) Isolation: This procedureconstructs2m + 1 signals

f0, . . . f2m that satisfy (with high probability)

1. For eachk′ such that|x̂[k′]|2 ≥ η||x||22, there existsi(0 ≤
i ≤ 2m + 1) such thatf̂i[k′] ≥ 0.98||fi||22.

2. Eachfi can be sampled by sampling non-adaptively from

x in O(m) places.

Here we note that the word “constructs” does not mean actual

output of the entire signal points(fi[0], fi[1], . . . , fi[N − 1]).

The procedure only sets up parameters which enable later pro-

cedures to sample arbitrary signal points of~fi. To show the

construction we define the operatorRθ,σ for σ, θ ∈ Z/NZ
through

(Rθ,σf)[n] = ej2πθn/Nf [σn]. (12)

Then it holds that

̂(Rθ,σf)[σk + θ] = f̂ [k]. (13)

Also we define the Fejér kernel of length2m + 1 as

Hm[n] :=





√
N

2m+1 n ∈ [−m,m]

0 otherwise.
(14)

It holds that

Ĥm[k] =





sin(π(2m+1)/N)
(2m+1) sin(πk/N) (k 6= 0)

1 (k = 0)
(15)

and in particularĤm[k] ≥ 2/π for k ∈ [−N/(2(2m +
1)), N/(2(2m + 1))]. We regard the last interval as “pass re-

gion” of Hm

Now, the signalsf0, . . . f2m are defined as follows: first, pick

θ andσ at random inZ/NZ, with σ invertible. Then put, for

each0 ≤ i ≤ 2m,

fi := (ej2πin/(2m+1)Hm) ∗ (Rθ,σx), (16)

where∗ denotes the convolution. In the frequency domain, the

spectrumx̂ is first permuted byk 7→ σk + θ, then filtered by

“ iN/(2m + 1)-shifted version of”Ĥm to form f̂i.

Using the fact thatk 7→ σk + θ is a pair-wise independent

permutation (i.e., for allk1 6= k2 andk3 6= k4, k1 7→ k3 and

k2 7→ k4 with probability1/(N(N − 1))), it can be shown that

the following holds with high probability: for eachk′ such that

|x̂[k′]|2 ≥ η||x||22, there existsi(0 ≤ i ≤ 2m + 1) such that

f̂i[k′] ≥ 0.98||fi||22. We note that sampling one point fromfi
can be done by sampling2m+1 points fromx, by construction.

2) Group Testing:For eachf ∈ {f0, . . . f2m}, the procedure

determines the frequencyk′ satisfying f̂ [k′] ≥ 0.98||f ||22, if

suchk′ exists. Then gather suchk′ from fi’s to form the fre-

quency listΛ. By the construction offi’s, Λ catches all such

frequencies that|x̂[k′]|2 ≥ η||x||22.

The procedure utilizes16 filters

Ĝ`[k] =
1
2
(1 + cos(

2πk

N
− 2π`

16
)) (` = 0, . . . , 15), (17)

each is of length3. If we define the pass region of̂G` by

pass` := {k : |2πk/N − 2π`/16| ≤ 2π/32}, (18)

thenĜ`[k] ≥ 0.99 for k ∈ pass` and these pass regions tile the

entire frequency domain. The procedure also uses a subroutine,

which will be explained in the next subsection, satisfying the



c ← 2M/β

Do

{
Pick r random independent samplesni ∈ Z/NZ
X ← 1

r

∑r
i=1 N |(Kcf)[ni]|2

c ← c/(1 + β)
} while X < β2c2 andc ≥ 1

OutputX/(1 + β)

Fig. 1. Estimating Norm

following: The subroutine makesO(log log M) samples, runs

in time polynomial inlog(M), on inputf (of lengthN ) with

biggest fourier coefficient̂f [k], it returns, with high probability,

a random outputX such that:

1. X ≤ ||f ||22,∀f .

2. If |f̂ [k]|2 ≥ 0.95||f ||22 thenX ≥ 0.5||f ||22.

Now assume that we are seeking unknownk′ which have

at least 98% energy off . Without loss of generality, we as-

sume thatk′ ∈ pass0. For each̀ = 0, 1, . . . , 15, We esti-

mate the norm||f ∗ G`|| using the subroutine. For̀ = 0, it

can be shown that| ̂f ∗G0|2 ≥ 0.95||f ∗G0||22 by combining

the factsk′ ∈ pass0, Ĝ0[k′] ≥ 0.99 and f̂ [k′] ≥ 0.98||f ||22.

Then the second property of the subroutine, the returned value

X satisfiesX ≥ 0.5||f ∗ Ĝ0||22. It also can be shown that

0.5||f ∗ Ĝ0||22 ≥ 0.48||f ||22. On the other hand, for̀ = 4,

it can be shown that the returned valueX of the subroutine

satisfiesX ≤ ||f ∗ Ĝ4||
2

2 ≤ 0.38||f ||22, from the facts that

k′ is far from pass4 and that the contributions to||f ∗ Ĝ4||
2

2

from frequencies other thank′ is small (at most0.02||f ||22).

For ` = 5, 6, . . . , 12, we obtainX ≤ 0.38||f ||22 in the same

way. So, we can eliminate the possibilities thatk′ ∈ pass` for

` = 4, . . . , 12. In this manner, we can always eliminate9/16
possibilities. The remaining region forms a cyclic interval of

lentgth at most7N/16. By applying the operatorR0,2, we can

dilate the remaining frequency region by two. Then applying

16 filters, we can halve the possibilities again. Repeating that

O(log(N)) times, we learnk′.

3) Estimating Norm:The subroutine for estimating norm is

shown in Fig. 1, whereβ > 0 is a small constant (independent

of N andM ), and the numberr of samples isO(log log M),
and in fact we can reuse the same samples in the loop.Kcf

stands means “f clipped at the ceilingc”, i.e,

(Kcf)[n] :=





f [n] (|f [n]| ≤ c/
√

N)

0 otherwise.
(19)

Intuition behind the algorithm is as follows: LetY =
1
r

∑r
i=1 N |f [ni]|2. ThenE[Y ] = ||f ||22 and it would be a good

estimate if the variance ofY were small. The variance comes

from spikes, so we use the clipped versionX instead. It is satis-

fied that0 ≤ E[X] ≤ E[Y ] = ||f ||22 andX has small variance.

If 95% of f is concentrated in a pure frequency, then the energy

of spikes are small, soE[X] ≈ E[Y ] = ||f ||22, and since vari-

ance ofX is small,X is a good estimation. The algorithm sets

a ceilingc, above which all values of the function are clipped

as if they were spikes. The algorithm gradually lowers the clip-

ping celingc until the energy estimate is consistent with the

ceiling value.

B. Estimation

This part estimateŝx[k], for eachk ∈ Λ, by a sampling algo-

rithm.

The sampling algorithm used here takes inputs(a, k, µ),
wherea is a signal of lengthN , k a frequency,µ an accuracy

parameter. Then the algorithm runs with costO(log(M)/µ),
making O(1/µ) samplings froma, and returns the estima-

tion ˜̂a[k], which satisfies with high probability that|˜̂a[k] −
â[k]|2 ≤ ε||a||22. The estimatioñ̂a[k] is computed as follows:

let t = O(1/µ) and pickt random positionsn1, . . . , nt. Put

a′′ = N/t
∑t

h=1 ∆nh
, where∆n is the delta function. Then

computeX = a′′[k] and return it as the estimate. It can be

shown thatE[X] = â[k] andE[|X − â[k]|2] ≤ O(ε||a||22).
For the estimation of x̂[k], an accuracy of µ =

1/poly(B log(N) log(M/δ)/ε) (whereδ = ||x− ropt(B)||2)

is required.

C. Iteration

Now we have the estimated fourier coefficients˜̂x[k] for k ∈
Λ. Let ˜̂x[k′] be the maximum (in abosolute value) among

them. Addk′ to the current coefficients listS, and update

the current representationr by r ← r + ˜̂x[k′]ψk′ . Then set

x ← x − ˜̂x[k′]ψk′ and A.. However, we should note that the

update ofx just before goto is in fact impossible, since we can

accessx only via sampling. Actually, after 2nd iteration, we

sample fromx−r whenever we need sample fromx, using the

maintained representationr.

The algorithm may or may not halt just after that the repre-

sentationr has grown toB-terms. Here we do not mention

the accurate halting condition, however, it is guaranteed to halt

within poly(B log(N) log(M/δ)/ε) iterations.

III. M ODIFICATIONS FOR2-D SIGNALS

The strategy of GGIMS algorithm is not dimension-

dependent, However, two key steps in the Identification part

needs a modification for 2-D signals. Here we describe mod-

ifications for Isolation step and Group Testing step. In the

sequel, signals are defined over the 2-dimensional domain

Z/N1Z× Z/N2Z.

A. Identification (2-D)

1) Isolation (2-D): Let η := ε/(2B).We will con-

struct (2m1 + 1) × (2m2 + 1) signalsfi1,i2 [n1, n2](i1 =
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Fig. 2. Ĥ10,10[k1, k2](N1 = N2 = 40)

0, 1, . . . , 2m1, i2 = 0, 1, . . . , 2m2), where(2m1+1)×(2m2+
1) = O(1/η).

We define the operatorRθ1,σ1,θ2,σ2 through

Rθ1,σ1,θ2,σ2x[n1, n2] = ej2π(θ1n1/N1+θ2n2/N2)

x[σ1n1, σ2n2] (20)

and 2-D Fej́er kernel by

Hm1,m2 [n1, n2] =




√
N1N2

(2m1+1)(2m2+1) (n1, n2) ∈
[−m1,m1]× [−m2,m2]

0 (otherwise)

(21)

See Fig.2 for the spectrum.

Then the signalsfi1,i2 [n1, n2](i1 = 0, 1, . . . , 2m1, i2 =
0, 1, . . . , 2m2) are constructed as follows: pickσ1, θ1 ∈
Z/N1Z at random, withσ1 invertible. Independently, pick

σ2, θ2 ∈ Z/N2Z at random, withσ2 invertible. Then set

fi1,i2 [n1, n2] :=

(ej2π(i1n1/(2m1+1)+i2n2/(2m2+1))Hm1,m2 [n1, n2])

∗Rθ1,σ1,θ2,σ2x[n1, n2]. (22)

It can be shown that they have the following (expected) prop-

erties:

1. For eachk′1, k
′
2 such that|x̂[k′1, k

′
2]|2 ≥ η||x||22, there ex-

ists(i1, i2)(0 ≤ i1 ≤ 2m1 + 1, 0 ≤ i2 ≤ 2m2 + 1) such

that f̂i1,i2 [k
′
1, k

′
2] ≤ 0.98||fi1,i2 ||22.

2. Eachfi1,i2 can be sampled by sampling non-adaptively

from x in O(m1m2) places.

2) Group Testing (2-D):In 2-D case, we rely on the following

256 filters (see Fig. 3):

Ĝ`1,`2 [k1, k2] =
1
4

{
1 + cos

(
2πk1

N1
− 2π`1

16

)}

·
{

1 + cos
(

2πk2

N2
− 2π`2

16

)}

(0 ≤ `1 < 16, 0 ≤ `2 < 16) (23)
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Fig. 3. The filterĜ0,0[k1, k2] (N1 = N2 = 16)

In the time domain,G`1,`2 has a support of3× 3 square.

With these filters, we can eliminate1 − (7/16)2 = 207/256
(instead of1− 7/16 in 1-D case) of possibilities in one step of

Group Testing.

B. Complexity of 2-D algorithm

By the above modifications of the algorithm, we obtain a nat-

ural 2-D extension of Theorem 1:

Theorem 2. There exists an algorithm, on inputB <

N1N2, ε > 0, and a signalx over the 2-dimensional

domain {0, . . . , N1 − 1} × {0, . . . , N2 − 1}, with cost

(B log(N1) log(N2) log(M)/ε)O(1), with high probability,

output a B-term representationr for x which satisfies

||x− r||2 ≤ (1 + ε)||x− ropt(B)||2, whereropt(B) is the op-

timal B-term representation forx. The algorithm accesses

only (B log(N1) log(N2) log(M)/ε)O(1) samples{x[n1, n2] :
(n1, n2) ∈ T} of x, where the random sample setT is chosen

independently ofx. (The success probability may be a constant

arbitrarily close to 1 and the cost for it is implied in “O(1)”.)

IV. CONCLUSION

In this paper, we have presented an efficient algorithm that

finds a near-optimalB-term fourier representation of 2-D sig-

nals, by modifying a part of GGIMS algorithm [1].

The running time of the algorithm depends on signal amount

only polylogarithmically, so the algorithm will be useful for

digesting vast 2-D signals.

The algorithm has many hidden constants that would affect

practical use. So more fine analysis of the algorithm is still

needed.
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