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ABSTRACT

In this paper, an effective implementation of allpass-
based wavelet filters is presented for image compres-
sion. Since the wavelet bases used here are both or-
thonormal and symmetric, it can be expected to get
a better compression performance than biorthogonal
wavelet bases. Furthermore, the proposed allpass-based
wavelet filters are IIR filters, thus it is known that the
computational complexity in implementation is lower
than FIR filters. Finally, it is shown through experi-
mental results that the proposed allpass-based wavelet
filters have a lower computational complexity than the
conventional compact-supported wavelet filters, such as
the popular Daubechies’s 9/7-tap wavelet, with a com-
parable compression performance.
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Wavelet Basis, Allpass Filter, ITR, Filter.

1. INTRODUCTION

In the past decade, wavelet-based image coding has
been extensively studied and applied in JPEG2000 and
MPEG4. In the wavelet-based image coding scheme,
two-band PR (perfect reconstruction) filter banks play
a very important role [6]. To avoid redundancy between
subimages, the PR filter banks should be orthonormal.
Additionally, the analysis and synthesis filters are re-
quired to have an exactly linear phase (corresponding
to symmetric wavelet bases), since linear phase filters
allow us to use simple symmetric extension methods to
accurately handle the boundaries of finite-length sig-
nals [5]. Unfortunately, there are no nontrivial or-
thonormal linear phase PR filter banks with FIR (fi-
nite impulse response) filters, except for the Haar ba-
sis [6]. To achieve a good compression performance,
a reasonable regularity i1s necessary for wavelet bases.
Therefore, at least one of the above-mentioned condi-
tions has to be given up to get more regularity than
the Haar basis. For example, the popular Daubechies’s

9/7-tap wavelet basis is biorthogonal and the orthonor-
mality requirement is relaxed [6]. On the other hand,
it is known in [8] that TIR (infinite impulse response)
wavelet filters can simultaneously satisfy both the or-
thonormality and linear phase requirements. A class
of ITR orthonormal symmetric wavelet filters has been
proposed in [8] by using allpass filters, and a closed-
form solution for the maximally flat wavelet filters is
given in [11] and [12].

In this paper, we present an effective implementa-
tion of the allpass-based wavelet filters for image com-
pression. Since such allpass-based wavelet filters are
both orthonormal and exactly linear phase, it can be
expected to obtain a better compression performance
than the conventional biorthogonal wavelet filters. Fur-
thermore, IIR filters have a lower computational com-
plexity in implementation and more degrees of freedom
in design than FIR filters, in general. Finally, it is
shown through experimental results that the allpass-
based wavelet filters proposed in this paper have a
lower computational complexity than the conventional
compact-supported wavelet filters, such as the popu-
lar Daubechies’s 9/7-tap wavelet, with a comparable
compression performance.

2. ORTHONORMAL SYMMETRIC
WAVELET FILTERS

It is well-known [1]~[4] that wavelet bases can be gener-
ated by two-band PR filter banks {H (z), G(z2)}, where
H(z) is a lowpass filter and G(z) is highpass. The or-
thonormality condition that H(z) and G(z) must sat-
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When symmetric wavelet bases are needed, H(z) and
((z) must have an exactly linear phase. In [8], Herley



and Vetterli have proposed a class of orthonormal sym-
metric wavelet filters by using real allpass filters, i.e.,

H(:) = A=) + 1 A(2) o
Gle) = LAY = 1Ay

where K is integer, and A(z) is an allpass filter of order

N and defined by
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where a,, 1s real and ag = 1. It can be easily verified
that H(z) and G(z) in Eq.(2) satisfy the orthonormal-
ity condition of Eq.(1). Assume that #(w) is the phase

response of A(z), that is,
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then the frequency responses of H(z) and G(z) are
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which have an exactly linear phase and satisfy the fol-
lowing power-complementary relation;

|[H (7)) +]G(e/)]* = 1. (6)

Therefore, the design problem becomes the phase de-
sign of allpass filter A(z). From the regularity require-
ment for wavelet bases, the wavelet filters H(z) and
(i(z) are required to have the maximally flat response.
For the maximally flat wavelet filters, a closed-form so-
lution has been given in [11] and [12] by

- (N)ﬁi—1—zv+%+i -

i=1 1+ [i + 1
2 4
A design method for the wavelet filters with the given
degrees of flatness has been proposed in [12] also. Tt
has been pointed out in [12] that an undesired zero
and bump arise nearby w = /2, as shown in Fig.1,
when even N and K = 4k+1 or 4k + 2 or when odd N
and K = 4k or 4k+3, where k = 0,1,---, [%J See [12]
in detail. To avoid this problem, we should choose K =
4k or 4k + 3 when N is even, and K =4k+1 or 4k +2
when N is odd.

3. IMPLEMENTATION OF
ALLPASS-BASED WAVELET FILTERS

In this section, we present an effective implementation
of the allpass-based wavelet filters proposed in Section
2. We will describe the decomposition process only,
and the reconstruction is done in the reversed order.
First, we assume that z(n) is input signal of length
M, whose z transform is X (z), and #(n) is a periodic
signal obtained by employing symmetric extension at
the boundaries of z(n). In the following, superscript
tilde denotes a periodic signal, and capital letter 1s its
z transform. It is known that H(z) and G(z) in Eq.(2)
can be realized by using the polyphase structure shown
in Fig.2. Then Z(n) must be passed through two allpass
filters A(z) and A(z~1) after decimation. Now, we will
demonstrate the decomposition process with an exam-
ple of M = 8 and K = 0. &(n) is obtained by doubling
the boundary points of 2(n) and its period is 2M. Z(n)
is firstly decimated to get @gp(n) and @ (n). Then ag(n)
and @ (n) are periodic with period M and satisfy the
symmetric relation;

o(n) = (M —1—n), (8)
that is, Oo(2) = =~ M+177, (=71, 9)

Note that when K # 0, the symmetric relation still
holds, although the symmetric point is different. @g(n)
and @;(n) are then passed through A(z) and A(z71) to
get ¥p(n) and 1 (n);

{ Vo(z) = Up(2) A(2)

Vi(z) = U1 (2)A(z7Y) (10)

It is clear from Eqs.(9) and (10) that @(n) and @ (n)
satisfy the symmetric relation also;

Vo(z) = z_M'H‘N/l(z_l), (11)

that is, f)o(n) _ f)l(M —1— n) (12)

Therefore, the subband signals #i(n) and @ (n) can be
computed by

{ Jo(n) = To(n) + #1(n) = do(n) + 5o(M — 1 — n)
gl(n) = f)o(n) — 171(77,) = 170(77,) — f)o(M —-1- n)
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It should be noted that only M samples of ¥5(n) are
needed to get M/2 samples of gy(n) and §(n). Thus
we just need to pass @g(n) through A(z) to get vg(n).
In general, A(z) has real poles and complex conjugate
poles, then can be divided into first- and second-order
allpass filters with real coefficients. In this paper, we



will use the maximally flat filters to meet the regularity
requirement. It is found that the maximally flat allpass
filters have only real poles, and is composed of first-
order real allpass filters;

N —
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where «; is real. Since o; may be |a;| < 1 or |oy| > 1,
A(z) is generally unstable and includes a stable part
A?(z) and anti-stable part A%(z), whose poles lie inside
and outside the unit circle, respectively. For anti-stable
part A¥(z), we have
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which is stable. Then AY(z) can be realized by revers-
ing the input signal, passing it through stable A%(z71)
and then re-reversing the output signal, as shown in
Fig.4. Since A(z) is composed of the cascade of first-
order real allpass filters, we consider implementation
of first-order real allpass filters. First-order real allpass
filters have many types of structures. The direct-form
structure is shown in Fig.5. Its input-output relation

is given by
o(n) =p(n) 4+ 51(n —1)
1(n) = a; x 55(n) , (16)
g(n) = 5o(n —1) = 51(n)
where only one multiplier and two adders are needed.
Since the input signal is periodic, we need an initial

value §9(—1) for starting the processing. §p(—1) can
be computed by

5
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and

S1(=1) = oy x 8p(—1), (18)

where L multiplications and L — 1 additions are needed
for the initial value. Then the number of multiplica-
tions and additions required in first-order allpass filter
implemantation for per output sample are 14+ L/M and
2+ (L —1)/M, respectively. Hence, the wavelet filters
H(z) and G(z) have a computational complexity with

L
NM:N(H—M)

L—-1 ’

(19)

where Njs and N4 are the number of multiplications
and additions for per output sample, respectively. Al-
though L must be L — oo theoretically, L = 20 ~ 40
1s sufficient in practice. The computational complexity
of filter order N = 2 ~ 4 with M = 512 and L = 20
are given in Table 1. In Table 1, the computational
complexity of the Daubechies’s 9/7-tap wavelet is also
given for comparison purpose. It is seen that the fil-
ters of N = 2 and N = 3 have a lower computational
complexity than the Daubechies’s 9/7-tap wavelet.

4. EXPERIMENTAL RESULTS

In this section, we investigate the performance of the
allpass-based wavelet filters for image compression. For
the purpose of fair and consistent comparisons, we have
chosen one of the best wavelet-based image codecs called
SPIHT proposed in[10]. To save coding/decoding time,
we have used the binary-uncoded version of SPIHT
without entropy coding. It had been pointed out in
[10] that about 0.3 ~ 0.6 dB in PSNR can be improved
with entropy coding, but at the expense of a larger ex-
ecution time. The test images are Lena, boat, goldhill,
and Barbara of size 512 x512. The decomposition level
is six. The distortion is measured by the peak signal
to noise ratio (PSNR) between the original and recon-
structed images. The allpass-based wavelet filters used
here are the maximally flat filters given in [11] and [12].

4.1. Influence of K

It had been pointed out in [12] that the frequency re-
sponses of the wavelet filters are strongly influenced
by K, and unapt K will cause an undesired zero and
bump nearby w = w/2. Here, we investigate the influ-
ence of K on the compression performance. The results
of Barbara obtained with N =2 and N = 3 are shown
in Fig.6 and Fig.7, respectively. It is seen that when
N iseven, K = 0 and K = 3 have a better result than
K =1and K = 2, while K =1 and K = 2 are better
when N is odd. It is thought to be due to the influence
of the undesired zero and bump nearby w = /2. Also,
the compression performance becomes worse with an
increasing K. Therefore, we conclude that the optimal
Kis K =0or 3 when N is even, and K = 1 or 2 when
N is odd. In the following, we choose K = 0 for even

N and K =1 for odd N.

4.2. Influence of N

To achieve a good compression performance, a reason-
able regularity is required for wavelet filters. The reg-
ularity increases with an increasing N, but the compu-
tational complexity becomes larger. To have fast com-



putation, NV should be small. We then investigate the
influence of N on the compression performance. The
results of Barbara and Lena are shown in Fig.8 and
Fig.9, respectively. Note that N = 0 corresponds to
the Haar wavelet. It is seen that the compression per-
formance globally increases with an increasing N, but
an asymptote is quickly attained. Above N = 2 ~ 3
for Lena and above N = 3 ~ 4 for Barbara, the perfor-
mance does not improve much. Therefore, we conclude
that N = 2 ~ 3 is sufficient for most natural images
with predominantly smooth background such as Lena,
boat and goldhill, and N = 3 ~ 4 for natural images
with high-frequency components such as Barbara.

4.3. Comparison with Daubechies Wavelet

The compression performance comparisons with the
Daubechies’s 9/7-tap wavelet are shown in Table 2. Tt
is seen that the filters of N = 2 ~ 4 have a better re-
sult than the Daubechies’s 9/7-tap wavelet for Barbara,
and are almost same for other images. To measure the
subjective visual quality of the reconstructed images,
the reconstructed images of Barbara with N = 2 and
N = 3 are shown in Fig.11 and Fig.12. The original
Barbara is shown in Fig.10, and the reconstructed im-
age with the Daubechies’s 9/7-tap wavelet is shown in
Fig.13 also.

5. CONCLUSIONS

In this paper, we have presented an effective imple-
mentation of the allpass-based wavelet filters that si-
multaneously satisfy both the orthonormality and lin-
ear phase conditions for image compression. We have
investigated the influence of the number K of delay
elements on the compression performance, and found
that the optimal K is K = 0 or 3 when N is even and
K =1 or 2 when N is odd. We have also found that
the allpass filters of order N = 2 ~ 4 are sufficient
for compression of natural images. Finally, we have
shown through experimental results that the allpass-
based wavelet filters proposed in this paper have a
lower computational complexity than the conventional
FIR wavelet filters, such as the Daubechies’s 9/7-tap
wavelet, with a comparable compression performance.

Table 1 Comparison of Computational Complexity
with M =512 and L =20

Filter Type No. of multiplier | No. of adder
Allpass-2 2.08 5.07
Allpass-3 3.12 7.11
Allpass-4 4.16 9.15

Daubeshies-9/7 4.50 7.00
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Fig.1 Magnitude response of H(z).
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Fig.4 Realization of unstable allpass filters.

Table 2 Comparison of Coding Performance in dB

Image | bpp | N=2 | N=3 | N=4 | D-9/7
1.0 | 39.99 | 39.99 | 39.97 | 39.81

Lena 0.5 | 36.83 | 36.84 | 36.80 | 36.64
0.1 | 29.71 | 29.70 | 29.63 | 29.75

1.0 | 38.36 | 38.32 | 38.25 | 38.03

boat 0.5 | 33.81 | 33.78 | 33.74 | 33.68
0.1 | 26.85 | 26.83 | 26.78 | 26.76

1.0 | 3590 | 35.91 | 35.89 | 35.80

goldhill | 0.5 | 32.55 | 3254 | 32.52 | 32.54
0.1 | 27.62 | 27.59 | 27.59 | 27.60

1.0 | 3746 | 37.64 | 37.71 | 36.73

Barbara | 0.5 | 32.24 | 32.45 | 32.51 | 31.59
0.1 | 24.39 | 24.38 | 24.37 | 24.29

q(n)

Sof
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Fig.5 First-order allpass filter implementation.
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Fig.12 Reconstructed image with N =3
at 0.50bpp (PSNR=32.45dB).

Fig.10 Original Barbara (512 x 512, 8bpp).

Fig.11 Reconstructed image with N =2 Fig.13 Reconstructed image with Daubechies—9/7
at 0.50bpp (PSNR=32.24dB). at 0.50bpp (PSNR=31.59dB).



