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ABSTRACT
This paper presents an efficient method for designing full
band IIR digital differentiators in the complex Chebyshev
sense. The proposed method is based on the formulation
of a generalized eigenvalue problem by using the Remez
multiple exchange algorithm. Therefore, a set of filter co-
efficients can be easily obtained by solving the eigenvalue
problem to find the absolute minimum eigenvalue, and then
the complex Chebyshev approximation is attained through
a few iterations starting from a given initial guess. The
proposed algorithm is computationally efficient because it
not only retains the speed inherent in the Remez exchange
algorithm, but also simplifies the interpolation step. One
design example is presented and compared with the con-
ventional methods. It can be seen that the design results
obtained by using the proposed method are better than that
in the conventional methods.
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1 Introduction

Numerical differentiation has been an important signal pro-
cessing problem, and digital differentiators have been used
in a large number of applications [1]∼[11]. The consider-
able interest in the design of suitable digital differentiators
has encouraged the development of various design tech-
niques. The design objective is to get a digital differentiator
that meets the specifications in the given sense. Much work
has been done, which is mainly devoted to the design of
FIR differentiators, since the exactly linear phase response
can be easily realized [4],[6],[9],[11]. In contrast, there
exists little work regarding IIR differentiators. A design
example is given in [7] by using the linear-programming-
based method.

In this paper, we propose an efficient method for de-
signing full band IIR digital differentiators in the complex
Chebyshev sense. The proposed method is based on the
formulation of a generalized eigenvalue problem by using
the Remez multiple exchange algorithm [10]. Therefore,
a set of filter coefficients can be easily obtained by solv-
ing the eigenvalue problem to find the absolute minimum
eigenvalue, and then the complex Chebyshev approxima-

tion is attained through a few iterations starting from a
given initial guess. The proposed algorithm is computa-
tionally efficient because it not only retains the speed in-
herent in the Remez exchange algorithm, but also simpli-
fies the interpolation step. Finally, one design example is
presented and compared with the conventional methods. It
is shown that the design results obtained by using the pro-
posed method are better than that in the conventional meth-
ods.

2 IIR Digital Differentiators

The frequency response of an ideal digital differentiator is

D(ω) = jω (|ω| ≤ π). (1)

In practical design, a constant delay is generally added to
obtain a causal solution. Then, the desired frequency re-
sponse of a digital differentiator is given by

Hd(ejω) = ωe−j(τω−π
2 ) (|ω| ≤ ωp), (2)

whereτ is the given group delay, andωp is the cutoff fre-
quency of the interest band. For full band differentiators,
ωp = π andτ = K +0.5 must be set for digital filters with
real coefficients [7], whereK is an integer number.

The transfer functionH(z) of an IIR digital filter with
numerator degreeN and denominator degreeM is defined
by

H(z) =

N∑
n=0

anz−n

M∑
m=0

bmz−m

, (3)

wherean andbm are real coefficients, andb0 = 1. The
frequency response ofH(z) is generally a complex-valued
function of the normalized frequencyω:

H(ejω) =

N∑
n=0

ane−jnω

M∑
m=0

bme−jmω

. (4)

The complex Chebyshev approximation problem consists
in finding the filter coefficientsan, bm that will minimize



the weighted Chebyshev norm

||W (ω)E(ω)|| = max
|ω|≤ωp

|W (ω)E(ω)| (5)

of the error function

E(ω) = H(ejω)−Hd(ejω) (6)

among all possible choices ofan, bm. To have a con-
stant relative error, we use the weighting functionW (ω) =
1/|ω| in the interest band [6],[7].

3 Design of IIR Differentiators

In this section, we describe the design of full band IIR digi-
tal differentiators based on the eigenvalue problem by using
the Remez multiple exchange algorithm. Our aim is to find
a set of filter coefficientsan, bm in such a way that the error
function in Eq.(6) satisfies

|E(ω)| ≤ δmax

W (ω)
= δmaxω (0 ≤ ω ≤ π), (7)

whereδmax (> 0) is the maximum error to be minimized.
Note that the weighting functionW (ω) becomes∞ when
ω = 0. This means from Eq.(7) thatE(ω) must be zero at
ω = 0, that is,E(0) = 0.

3.1 Initial Choice

Since the aim is to minimize the maximum errorδmax, we
pick L frequency points̄ωi as shown in Fig.1 and then as-
sumeE(ω) to be zero at these frequency points:

E(ω̄i) = H(ejω̄i)−Hd(ejω̄i) = 0. (8)

WhenN + M + 1 is odd, thenL = (N + M)/2 + 1, and
we pick these frequencies̄ωi equally spaced in[0, π) from
ω̄1 = 0, as shown in Fig.1(a). Note thatω̄L < π. When
N +M +1 is even,L = (N +M +1)/2+1, and then we
pick ω̄i equally spaced in[0, π] from ω̄1 = 0 to ω̄L = π, as
shown in Fig.1(b). Sinceb0 = 1, we substitute Eq.(4) into
Eq.(8) and get

N∑
n=0

ane−jnω̄i − jω̄i

M∑
m=1

bme−j(m+τ)ω̄i = jω̄ie
−jτω̄i .

(9)
By dividing Eq.(9) into the real and imaginary parts, we
have

N∑
n=0

an cosnω̄i − ω̄i

M∑
m=1

bm sin(m + τ)ω̄i = ω̄i sin τ ω̄i,

(10)
wherei = 1, 2, . . . , L, and

N∑
n=0

an sin nω̄i + ω̄i

M∑
m=1

bm cos(m + τ)ω̄i = −ω̄i cos τ ω̄i,

(11)

where i = 2, 3, . . . , L if N + M + 1 is odd, andi =
2, 3, . . . , L − 1 if N + M + 1 is even, sincēωL = π and
τ = K +0.5. It is clear that there are a total ofN +M +1
equations in Eqs.(10) and (11) whetherN + M + 1 is odd
or even, and hence, we can get an initial solution by solving
the linear equations of Eqs.(10) and (11).

3.2 Formulation

By using the obtained initial filter coefficients, we can com-
pute the error functionE(ω) and see that the obtained mag-
nitude response of the weighted error function may not be
equiripple. In the following, we will apply the Remez mul-
tiple exchange algorithm to obtain an equiripple response.
First, we search for all extremal frequenciesωi in [0, π] as
follows;

0 = ω1 < ω2 < · · · < ωL1 ≤ π, (12)

whereL1 = L + 1 andωL1 = π if N + M + 1 is odd,
andL1 = L andωL1 < π if N + M + 1 is even, as shown
in Fig.1. Note that althoughω = 0 is not the extremal
frequency, we have setω1 = 0, becauseW (0) = ∞ forces
E(0) = 0. We then compute the phaseθ(ωi) of the error
functionE(ω) atωi, and formulate the condition forE(ω)
as follows;

E(ωi) = H(ejωi)−Hd(ejωi) = δωie
jθ(ωi), (13)

whereδ(> 0) is a magnitude error to be minimized. Sub-
stituting Eq.(4) into Eq.(13), we divide Eq.(13) into the real
and imaginary parts as

N∑
n=0

an cos nωi − ωi

M∑
m=0

bm sin(m + τ)ωi

= δωi

M∑
m=0

bm cos(mωi − θ(ωi)),

(14)

wherei = 1, 2, . . . , L1, and

N∑
n=0

an sin nωi + ωi

M∑
m=0

bm cos(m + τ)ωi

= δωi

M∑
m=0

bm sin(mωi − θ(ωi)),

(15)

wherei = 2, 3, . . . , L, sinceωL1 = π whenN + M + 1 is
odd. Therefore, there are a total ofN + M + 2 equations
in Eqs.(14) and (15) whetherN + M + 1 is odd or even.
We rewrite Eqs.(14) and (15) in matrix form as

Pa = δ Qa, (16)

wherea = [a0, a1, · · · , aN , b0, b1, · · · , bM ]T , and the ele-
ments of the matricesP , Q are given by

Pmn =





cos(n− 1)ωm (n = 1, 2, · · · , N + 1)

−ωm sin(n−N − 2 + τ)ωm

(n = N + 2, · · · , N + M + 2)

,

(17)



Qmn =





0 (n = 1, 2, · · · , N + 1)

ωm cos((n−N − 2)ωm − θ(ωm))

(n = N + 2, · · · , N + M + 2)

,

(18)
if m = 1, 2, . . . , L1, and

Pmn =





sin(n− 1)ωm−L1+1 (n = 1, 2, · · · , N + 1)

ωm−L1+1 cos(n−N − 2 + τ)ωm−L1+1

(n = N + 2, · · · , N + M + 2)

,

(19)

Qmn =





0 (n = 1, 2, · · · , N + 1)

ωm−L1+1 sin((n−N − 2)ωm−L1+1 − θ(ωm−L1+1))

(n = N + 2, · · · , N + M + 2)
(20)

if m = L1 + 1, . . . , N + M + 2. Therefore, it should be
noted that Eq.(16) corresponds to a generalized eigenvalue
problem, i.e.,δ is an eigenvalue anda is a correspond-
ing eigenvector. In order to minimizeδ, we must find the
absolute minimum eigenvalue by solving the above eigen-
value problem [10], so that the corresponding eigenvector
gives a set of filter coefficientsan, bm. Since we are in-
terested in only one eigenvector corresponding to the ab-
solute minimum eigenvalue, this computation can be done
efficiently by using the iterative power method without in-
voking general methods such as the QR technique. By us-
ing the obtained filter coefficients, we compute the error
functionE(ω) and search for all extremal frequenciesωi in
[0, π]. As a result, it could be found that the obtained mag-
nitude response may not be equiripple. We then chooseL1

extremal frequenciesωi as shown in Eq.(12), and calculate
the phaseθ(ωi) of E(ω) at ωi. Therefore, the eigenvalue
problem of Eq.(16) can be again solved to obtain a new set
of filter coefficientsan, bm. The above procedure is iter-
ated until the equiripple response is attained. The design
algorithm is shown in detail as follows.

3.3 Design Algorithm

Procedure {Design Algorithm of IIR Digital Differentia-
tors}
Begin

1. ReadN , M , andτ .

2. SelectL frequency points̄ωi as shown in Fig.1.

3. Solve Eqs.(10) and (11) to get an initial solution.

4. ComputeE(ω) to search for all extremal frequencies
Ωi as shown in Eq.(12) and getθ(Ωi).

Repeat

5. Setωi = Ωi for i = 1, 2, · · · , L1.

6. ComputeP andQ by using Eqs.(17), (18), (19) and
(20), then find the absolute minimum eigenvalue of
Eq.(16) to obtain a set of filter coefficientsan, bm.

7. ComputeE(ω) to search for all extremal frequencies
Ωi as shown in Eq.(12) and getθ(Ωi).

Until Satisfy the following condition for a prescribed
small constantε (in general,ε = 10−6):

L1∑

i=1

|Ωi − ωi| ≤ ε

End.

4 Design Example

In this section, we present one numerical example to
demonstrate the effectiveness of the proposed method, and
compare the filter performance with the existing design
methods. The filter specification isN = M = 5, and
τ = 3.5, which is the same asExample 3in [7]. The ini-
tial frequency points̄ωi is selected as shown in Fig.1(a).
We then obtained a first solution and chose a set of ini-
tial extremal frequenciesωi as shown in Fig.1(a). Start-
ing with these initial extremal frequencies, we obtained an
equiripple solution after six iterations. The magnitude re-
sponse ofE(ω) is shown in Fig.2, and the maximum error
is δmax = 0.02486 whereasδmax = 0.02592 in [7]. The
magnitude response, phase error and group delay ofH(z)
are shown in Fig.4, Fig.3 and Fig.5, respectively. The re-
sults in [7] are also shown in dotted line for comparison. It
can be seen that the proposed method has a smaller group
delay error. The pole-zero location of the obtained IIR dif-
ferentiator is shown in Fig.6 and it is clear that the filter is
causal and stable. It has been proved in [3] that to guaran-
tee the causality and stability, a larger group delay should
be specified. We have found for this IIR differentiator that
when the group delay is set to be larger thanτ = 2.5, then
the filter becomes causal and stable.

5 Conclusions

In this paper, we have proposed an efficient method for de-
signing full band IIR digital differentiators in the complex
Chebyshev sense. The proposed method is based on the
formulation of a generalized eigenvalue problem by using
the Remez multiple exchange algorithm. Therefore, a set
of filter coefficients can be easily obtained by solving the
eigenvalue problem to find the absolute minimum eigen-
value, and then the complex Chebyshev approximation is
attained through a few iterations starting from a given ini-
tial guess. The proposed algorithm is computationally ef-
ficient because it not only retains the speed inherent in the
Remez exchange algorithm, but also simplifies the inter-
polation step. Finally, it has been shown through design
examples that the design results obtained by using the pro-
posed method are better than that in the conventional meth-
ods.
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Figure 1. Selection of initial frequency points. (a)N +
M + 1 is odd, (b)N + M + 1 is even.
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Figure 2. Magnitude responses ofE(ω).
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Figure 3. Phase error responses of IIR differentiators.
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Figure 4. Magnitude responses of IIR differentiators.
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Figure 5. Group delays of IIR differentiators.
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Figure 6. Pole–zero location of IIR differentiator.


