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ABSTRACT
Fractional delay (FD) filters are an important class of digi-
tal filters and are useful in various signal processing appli-
cations. In this paper, the design problem of the maxflat
FD IIR filters is discussed, and a new closed-form expres-
sion for its filter coefficients is presented. The filter co-
efficients are directly derived by solving a linear system
of Vandermonde equations, which are obtained from the
flatness conditions of FD filters. The existing maxflat FD
FIR and allpass IIR filters are two special cases of the pro-
posed maxflat FD IIR filters. Finally, some examples are
designed to demonstrate the effectiveness of the proposed
maxflat FD IIR filters.
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1 Introduction

Fractional delay (FD) filters are an important class of dig-
ital filters, and have been found numerous applications in
signal processing, image processing, and so on [1]. FD
filters are required to have the specified fractional delay
and flat magnitude response. Conventionally, FIR filters
have been used in the design of FD filters [1], [3], [4], [5].
The least-square, minimax (Chebyshev), and maxflat (max-
imally flat) criterions are used to optimize the frequency re-
sponse of FD filters. Among these criterions, the maxflat
approximation enable us to obtain the closed-form solution
of FD FIR filters [3], [4], [5]. Compared with FIR filters,
allpass filters, whose magnitude response is constant at all
frequencies, can be realized by using IIR filters. Thus only
the group delay needs to be optimized for allpass IIR fil-
ters. The closed-form solution for the maxflat FD allpass
filters has been also given in [2]. However, the design of a
general class of maxflat FD IIR filters is still open.

In this paper, we will discuss the design problem of
maxflat IIR filters with an arbitrarily specified fractional
delay, and give a new closed-form expression for its fil-
ter coefficients. We derive a linear system of Vander-
monde equations from the flatness conditions of FD filters
at ω = 0, and then obtain a set of filter coefficients by di-
rectly solving the linear system of Vandermonde equations.
The proposed maxflat FD IIR filters include the existing

maxflat FD FIR and allpass filters as special cases. More-
over, the proposed maxflat FD IIR filters become causal
stable if we choose the desired group delay to be larger
than a specific value, which is dependent on the design
specification. Finally, some design examples are shown to
demonstrate the effectiveness of the proposed maxflat FD
IIR filters.

2 FD IIR Filters

Let H(z) be the transfer function of IIR digital filters;

H(z) =

N∑
n=0

anz−n

M∑
m=0

bmz−m

, (1)

whereN and M are degrees of numerator and denomi-
nator, respectively, andan, bm are real coefficients, where
b0 = 1.

The desired frequency response of FD filters is given
by

Hd(ejω) = e−j(K+p)ω, (2)

whereK is an integer delay, andp is a fractional delay in
the range[−0.5, 0.5].

Let E(ω) be the weighted error function between
H(ejω) andHd(ejω);

E(ω) = W (ω)[H(ejω)−Hd(ejω)], (3)

where W (ω) is a real and positive weighting function.
Therefore, the design problem of FD filters is the approxi-
mation ofH(ejω) to Hd(ejω), that is, the minimization of
the error functionE(ω) in the specified criterion, e.g., in
the least-square, or minimax, or maxflat sense.

3 Maxflat FD IIR Filters

In this section, we describe the design of FD IIR filters in
the maxflat sense. Both the magnitude and group delay
responses are required to be flat atω = 0. Thus, the flatness



conditions are given by





|H(ejω)|
∣∣
ω=0

= 1

∂r|H(ejω)|
∂ωr

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , R1 − 1)
,

(4)



τ(ω)
∣∣
ω=0

= K + p

∂rτ(ω)
∂ωr

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , R2 − 2)
,

(5)
whereR1 andR2 are parameters that control the degree of
flatness of the magnitude and group delay responses, re-
spectively. In the following, we will discuss only the case
of R = R1 = R2.

Let Ĥ(ejω) = H(ejω)ej(K+p)ω. From Eq.(1), we
have

Ĥ(ejω) =

N∑
n=0

anej(K+p−n)ω

M∑
m=0

bme−jmω

=
N(ω)
D(ω)

, (6)

and the desired frequency response ofĤ(ejω) becomes

Ĥd(ejω) = 1. (7)

It is clear from Eq.(6) that

{
|Ĥ(ejω)| = |H(ejω)|
τ̂(ω) = τ(ω)− (K + p)

, (8)

where|Ĥ(ejω)| andτ̂(ω) are the magnitude and group de-
lay responses of̂H(ejω), respectively. Therefore, the flat-
ness conditions in Eqs.(4) and (5) are equivalent to





|Ĥ(ejω)|∣∣
ω=0

= 1

∂r|Ĥ(ejω)|
∂ωr

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , R− 1)
,

(9)
∂r τ̂(ω)
∂ωr

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , R− 2). (10)

Note thatR = R1 = R2.
Assume that̂θ(ω) is the phase response of̂H(ejω),

then we have

τ̂(ω) = −∂θ̂(ω)
∂ω

. (11)

Since IIR filters only with real-valued coefficients are con-
sidered in this paper, it is known that its phase is0 atω = 0,
i.e., θ̂(0) = 0. Thus, the condition in Eq.(10) becomes

∂r θ̂(ω)
∂ωr

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , R− 1). (12)

Theorem 1. The flatness conditions in Eqs.(9) and (12) are
equivalent to





Ĥ(ejω)
∣∣
ω=0

= 1

∂rĤ(ejω)
∂ωr

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , R− 1)
.

(13)

Proof. SinceĤ(ejω) = |Ĥ(ejω)|ejθ̂(ω), thenĤ(1) = 1
means|Ĥ(1)| = 1 andθ̂(0) = 0, and vice versa. We have

∂Ĥ(ejω)
∂ω

=
∂|Ĥ(ejω)|

∂ω
ejθ̂(ω) + |Ĥ(ejω)|∂ejθ̂(ω)

∂ω

= [
∂|Ĥ(ejω)|

∂ω
+ j|Ĥ(ejω)|∂θ̂(ω)

∂ω
]ejθ̂(ω).(14)

Since|Ĥ(1)| = 1 andθ̂(0) = 0, then

∂Ĥ(ejω)
∂ω

∣∣∣∣∣
ω=0

=
∂|Ĥ(ejω)|

∂ω

∣∣∣∣∣
ω=0

+ j
∂θ̂(ω)
∂ω

∣∣∣∣∣
ω=0

. (15)

Thus, ∂|Ĥ(ejω)|
∂ω

∣∣∣
ω=0

= 0 and ∂θ̂(ω)
∂ω

∣∣∣
ω=0

= 0 are equiva-

lent to ∂Ĥ(ejω)
∂ω

∣∣∣
ω=0

= 0. Similarly, we have

∂2Ĥ(ejω)
∂ω2

∣∣∣∣∣
ω=0

=
∂2|Ĥ(ejω)|

∂ω2

∣∣∣∣∣
ω=0

+ j
∂2θ̂(ω)
∂ω2

∣∣∣∣∣
ω=0

,

(16)

which means that∂
2|Ĥ(ejω)|

∂ω2

∣∣∣
ω=0

= 0 and ∂2θ̂(ω)
∂ω2

∣∣∣
ω=0

= 0

are equivalent to∂2Ĥ(ejω)
∂ω2

∣∣∣
ω=0

= 0.

For r = 3, 4, · · · , R− 1,

∂rĤ(ejω)
∂ωr

∣∣∣∣∣
ω=0

=
∂r|Ĥ(ejω)|

∂ωr

∣∣∣∣∣
ω=0

+ j
∂r θ̂(ω)
∂ωr

∣∣∣∣∣
ω=0

.

(17)

Therefore, it can be easily seen that∂r|Ĥ(ejω)|
∂ωr

∣∣∣
ω=0

= 0

and ∂r θ̂(ω)
∂ωr

∣∣∣
ω=0

= 0 are equivalent to∂rĤ(ejω)
∂ωr

∣∣∣
ω=0

= 0.

Theorem 2. The condition in Eq.(13) is equivalent to

∂rN(ω)
∂ωr

∣∣∣∣
ω=0

=
∂rD(ω)

∂ωr

∣∣∣∣
ω=0

(r = 0, 1, · · · , R− 1).

(18)

Proof. From Eq.(6), we haveN(ω) = Ĥ(ejω)D(ω), then
Ĥ(1) = 1 meansN(0) = D(0). We have

∂N(ω)
∂ω

=
∂Ĥ(ejω)

∂ω
D(ω) + Ĥ(ejω)

∂D(ω)
∂ω

. (19)

Thus, ∂Ĥ(ejω)
∂ω

∣∣∣
ω=0

= 0 is equivalent to

∂N(ω)
∂ω

∣∣∣∣
ω=0

=
∂D(ω)

∂ω

∣∣∣∣
ω=0

. (20)



For r = 2, 3, · · · , R− 1, we have

∂rN(ω)
∂ωr

=
r∑

i=0

(
r

i

)
∂r−iĤ(ejω)

∂ωr−i

∂iD(ω)
∂ωi

. (21)

SinceĤ(1) = 1 and ∂iĤ(ejω)
∂ωi

∣∣∣
ω=0

= 0 for i = 1, · · · , r−
1, then ∂rĤ(ejω)

∂ωr

∣∣∣
ω=0

= 0 is equivalent to

∂rN(ω)
∂ωr

∣∣∣∣
ω=0

=
∂rD(ω)

∂ωr

∣∣∣∣
ω=0

. (22)

According toTheorem 1 and 2, the flatness condi-
tions of FD filters have been reduced to Eq.(18). By substi-
tuting N(ω) andD(ω) in Eq.(6) into Eq.(18), we derive a
system of linear equations as follows;

N∑
n=0

(K + p− n)ran =
M∑

m=0

(−m)rbm, (23)

for r = 0, 1, · · · , R − 1. By usingb0 = 1, Eq.(23) can be
rewritten in matrix form as

V a = u, (24)

where a = [a0, a1, · · · , aN , b1, · · · , bM ]T , u =
[1, 0, · · · , 0]T ,

V =




1 1 · · · 1 −1 · · · −1
K + p K + p− 1 · · · K + p−N −(−1) · · · −(−M)

...
...

. . .
...

...
. . .

...
(K + p)R−1 (K + p− 1)R−1 · · · (K + p−N)R−1 −(−1)R−1 · · · −(−M)R−1


 .

It should be noted thatV is the Vandermonde matrix with
distinct elements ifp 6= 0 1. Therefore, there always exists
a unique solution ifR = N+M+1. By using the Cramer’s
rule, we can obtain the presentation of the filter coefficient
as a quotient of two Vandermonde’s determinants. There-
fore, a closed-form solution is obtained as





an = (−1)n+1 M !
n!(N − n)!

N∏

i=0

(i−K − p)

M∏

i=0

(i− n + K + p)

bm = (−1)m M !
m!(M −m)!

N∏

i=0

i−K − p

i−m−K − p

.

(25)
Once the design specificationN , M , K andp are given, a
set of filter coefficientsan andbm can be easily calculated
by using Eq.(25) for the maxflat FD IIR filters. If we set
M = 0 in Eq.(25), then the obtained filters become the
maxflat FD FIR filters, which is the same as that proposed

1Whenp = 0, the desired delay is integerK, and can be easily real-
ized byz−K . So this case needs not to be considered in the design.

in [3], [4] and [5]. Also if N = M , we havean = bN−n

from Eq.(25), thus the resulting filters become the maxflat
allpass filters proposed in [2]. Therefore, it is clear that the
existing maxflat FD FIR and allpass filters are two special
cases of the proposed maxflat FD IIR filters. Therefore, the
proposed maxflat FD IIR filters are more general than the
conventional maxflat FD (FIR and allpass IIR) filters.

We have found that the proposed maxflat FD IIR
filters seldom have its poles at the unit circle. However,
the poles may be located outside the unit circle depending
on the group delayK + p. IIR filters with some poles
located outside the unit circle are not causal, but can be
divided into the causal and anticausal stable parts that have
the poles inside and outside the unit circle respectively,
thus, it can be realized in some applications such as image
processing and offline processing. When causal stable IIR
filters are needed, we have to choose the group delayK +p
carefully. It is known in [2] and [6] that allpass filters
with N = M become causal stable if the group delay
satisfiesK + p > N − 1. Moreover, IIR half-band filters,
a special case of FD IIR filters withp = 0.5, have been
also discussed in [6]. It has been pointed out in [6] that
the filters are causal stable when the group delay is larger
than a specific value, which is dependent onN and M .
Therefore, We have found that the proposed maxflat FD
IIR filters become causal stable if we choose the desired
group delayK + p to be larger than a specific value, which
is dependent on the design specificationN andM .

4 Design Examples

In this section, we present several design examples to
demonstrate the effectiveness of the proposed maxflat FD
IIR filters, and compare the filter performance with the ex-
isting maxflat FD FIR and allpass filters.

Example 1: We consider the design of the maxflat
FD IIR filters with N = 8 andM = 4. The degree of
flatness is set toR = N + M + 1 = 13 at ωp = 0, and
the integer delay isK = 7. The fractional delay is chosen
from p = −0.5 to p = 0.5 at intervals of∆p = 0.2. The
filter coefficients are calculated by using Eq.(25), and the
resulting magnitude and group delay responses are shown
in Fig.1 and Fig.2, respectively. It is seen in Fig.1 that the
obtained magnitude responses are flat atω = 0, and are
under the influence of the fractional delayp, particularly in
the higher frequency. In Fig.2, the group delay responses
are also flat atω = 0, and can be arbitrarily specified. It
should be noted that the obtained maxflat FD IIR filters are
causal stable whenK + p > 5.80.
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Figure 1. Magnitude responses of the maxflat FD IIR filters
in Example 1.

0 0.1 0.2 0.3 0.4 0.5

6.4

6.6

6.8

7

7.2

7.4

7.6

NORMALIZED FREQUENCY

G
R

O
U

P
 D

E
LA

Y
 (

T
)

p=−0.5

p=−0.3

p=−0.1

p=0.1

p=0.3

p=0.5

Figure 2. Group delay responses of the maxflat FD IIR
filters in Example 1.

Example 2: We consider the design of the maxflat
FD IIR filters with N + M = 10, and the desired delay
K = 5 andp = 0.2. The degree of flatness is set toR =
N +M +1 = 11 atωp = 0. We have designed the maxflat
FD IIR filter with N = 7 andM = 3 by using Eq.(25).
The FD IIR filters withN = 7 andM = 3 become causal
stable whenK + p > 4.64. The resulting magnitude and
group delay responses are shown in the solid line in Fig.3
and Fig.4, respectively. We have also designed the maxflat
FD FIR filter withN = 10 (M = 0), and allpass filter with
N = M = 5. Their magnitude and group delay responses
are also shown in Fig.3 and Fig.4. It is seen in Fig.3 that
the magnitude response of allpass filter is always1 at all
frequencies, whereas the IIR filter withN = 7 andM = 3
has more flat group delay response than the FD FIR and
allpass filters, as shown in Fig.4.
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Figure 3. Magnitude responses of the maxflat FD IIR filters
in Example 2.
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Figure 4. Group delay responses of the maxflat FD IIR
filters in Example 2.

5 Conclusion

In this paper, we have discussed the design problem of a
general class of FD IIR filters with the maxflat frequency
response, and proposed a new closed-form expression for
its filter coefficients. The filter coefficients have been di-
rectly derived by solving a linear system of Vandermonde
equations, which are obtained from the flatness conditions
at ω = 0. The proposed maxflat FD IIR filters include the
existing maxflat FD FIR and allpass filters as special cases.
Moreover, it has found that the maxflat FD IIR filters are
causal and stable if the desired group delay is chosen to be
larger than a specific value. Finally, some design examples
have been shown to demonstrate the effectiveness of the
proposed maxflat FD IIR filters.
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